Resource Acquisition Is Initialization
Resource Acquisition Is Initialization (RAII), перекладається як «Отримання ресурсу є ініціалізація» — програмна ідіома, яка використовується в деяких об`єктно-орієнтовних мовах програмування, більшою мірою в C++, звідки вона взяла початок, але також застосовується в D, Ada, і Vala. Відповідно RAII, утримання ресурсу тісно прив'язане до життєвого циклу об'єкта: алокація ресурсу (отримання) відбувається в момент створення об'єкта за допомогою конструктора, а деаллокація (звільнення) відбувається в момент знищення об'єкта за допомогою деструктора. Якщо об'єкти видаляються правильно, витоків ресурсів не відбувається. Інші назви цієї ідіоми: Constructor Acquires, Destructor Releases (CADRe)[1] і Scope-based Resource Management (SBRM);[2] ПеревагиПеревагами RAII, як техніки керування ресурсами є те, що вона забезпечує інкапсуляцію, безпечність при виняткових ситуаціях (для відслідковування ресурсів), і локальність (дозволяє написати логіку отримання ресурсу і вивільнення поруч в одному місці). Інкапсуляція забезпечується тим, що логіка управління ресурсами описана один раз в класі, а не в кожному місці де вона використовується. Безпека при виняткових ситуаціях забезпечується для стекових ресурсів (ресурси звільняються в тій самій області видимості в якій вони були створені) завдяки прив'язці до життєвого циклу стекової змінної (локальної змінної оголошеної в даному блоці): якщо виникає виняткова ситуація (англ. exception), і існує відповідний блок відловлювання помилок, єдиний код, який буде завжди виконаний після виходу із даної області видимості, це деструктори об'єктів об'явлених в цій області видимості. Локальність, забезпечується завдяки написанню конструктора і деструктора у визначенні класу поруч один з одним. Управління ресурсами, таким чином, повинно бути тісно прив'язаним до тривалості життя відповідних об'єктів, щоб отримати автоматичну алокацію й очищення. Ресурси створюються в процесі ініціалізації, коли немає жодної можливості використати їх раніше, перш ніж вони стануть доступними й звільнити їх гарантовано, навіть у разі виникнення помилок. Типове застосуванняRAII часто використовується для контролювання замикання м'ютексу (mutex) у багатопотокових застосуваннях. В такому випадку, при знищенні об'єкт гарантовано відпускає м'ютекс. Без застосування RAII існує потенційна загроза взаємного блокування (deadlock) м'ютексів. При використанні RAII, в код, який бере м'ютекс включає в собі логіку в якій м'ютекс буде звільнено коли виконання програми вийде за область видимості об'єкта. Інше типове застосування, це робота з файлами: ми можемо мати об'єкт, який зберігає посилання на файл, який буде відкритий для запису в конструкторі, і закритий в деструкторі. В обох випадках, RAII гарантує лише те, що ресурс буде звільнено коректно, але програмісту слід контролювати безпеку при виникненні виняткових ситуацій власноруч. Якщо код, який проводить модифікацію даних, не є безпечним, м'ютекс може бути не взятий, або файл закритий так, що структура даних файлу буде пошкоджена. Керування динамічно виділеними об'єктами також можна здійснювати за допомогою RAII. Для цього стандартна бібліотека C++ 11 має реалізацію так званого розумного вказівника std::unique_ptr для об'єкта з одним власником, і std::shared_ptr для об'єктів, на які існує декілька посилань. Схожі реалізації також існують в C++ 98 — std::auto_ptr і в бібліотеці Boost — boost::shared_ptr. Приклад на C++11Наступний приклад на C++11 демонструє використання RAII для доступу до файлів і синхронізації м'ютексів: #include <string>
#include <mutex>
#include <iostream>
#include <fstream>
#include <stdexcept>
void write_to_file (const std::string & message) {
// м’ютекс для захисту доступу для файлу
static std::mutex mutex;
// взяття м’ютексу перед операціями з файлом
std::lock_guard<std::mutex> lock(mutex);
// перевірка відкриття файлу
std::ofstream file("example.txt");
if (!file.is_open())
throw std::runtime_error("Неможливо відкрити файл");
// запис повідомлення до файлу
file << message << std::endl;
// файл буде закрито першим при виході з області видимості (незалежно від виняткових ситуацій)
// м’ютекс буде звільнено наступним (в деструкторі lock)
}
Цей код є безпечним для виняткових ситуацій, оскільки C++ гарантує, що всі стекові об'єкти буде знищено після виходу з області видимості. Деструктор для обох об'єктів: lock і file гарантовано буде викликано при поверненні керування з функції, незалежно від того, сталася виняткова ситуація (exception) чи ні.[3] Локальні змінні дозволяють легко керувати кількома ресурсами в одній функції: вони знищуються у зворотньому порядку відповідно до того, як створювалися, а об'єкти знищуються лише тоді, коли вони були вдало створені, якщо не відбулося виняткових ситуацій в момент створення об'єкта.[4] Використання RAII значно спрощує процедуру управління ресурсами, зменшує об'єми коду і дозволяє пересвідчитися в коректності програми, тому більша частина стандартної бібліотеки C++ дотримується цієї ідіоми.[5] Примітки
|