Фактор графа G — це кістяковий підграф, тобто підграф, що має ті ж вершини, що й граф G. k-Фактор графа — це кістяковий k-регулярний підграф, а k-факторизація розбиває ребра графа на неперетинні k-фактори. Кажуть, що граф Gk-факторизований, якщо він дозволяє k-розбиття. Зокрема, множина ребер 1-фактора — це досконале парування, а 1-розклад k-регулярного графа — це реберне розфарбуванняk кольорами. 2-фактор — це набір циклів, які покривають усі вершини графа.
1-факторизація
Якщо граф 1-факторизований (тобто має 1-факторизацію), він має бути регулярним графом. Проте не всі регулярні графи є 1-факторизованими. k-Регулярний граф є 1-факторизованим, якщо його хроматичний індекс дорівнює k. Приклади таких графів:
Будь-який регулярний двочастковий граф[1]. За допомогою теореми Холла про весілля можна показати, що k-правильний двочастковий граф містить досконале парування. Можна тоді видалити досконале парування та (k − 1)-регулярний двочастковий граф і продовжити той самий процес рекурсивно.
За одного зі способів побудови 1-факторизації повного графа всі вершини, крім однієї, поміщають на колі, утворюючи правильний многокутник, а вершину, що залишилася, поміщають у центр кола. За такого розташування вершин процес побудови 1-фактора полягає у виборі ребра e, що з'єднує центральну вершину з однією з вершин на колі, потім вибирають усі ребра, перпендикулярні до ребра e. 1-фактори, побудовані в такий спосіб, утворюють 1-факторизацію графа.
Досконала пара 1-факторизацій — це пара 1-факторів, об'єднання яких дає гамільтонів цикл.
Досконала 1-факторизація (P1F) графа — це 1-факторизація, яка має властивість, що будь-яка пара 1-факторів є досконалою парою. Досконалу 1-факторизацію не слід плутати з досконалим паруванням (яке також називають 1-фактором).
1964 року Антон Котціг[en] висловив припущення, що будь-який повний граф, де має досконалу 1-факторизацію. Відомо, що такі графи мають досконалі 1-факторизації[5]:
нескінченне сімейство повних графів , де p — непарне просте (Андерсон і Накамура, незалежно);
нескінченне сімейство повних графів де p — непарне просте;
спорадично інші графи, включно з , де . Свіжіші результати є тут.
Якщо повний граф має досконалу 1-факторизацію, то повний двочастковий граф також має досконалу 1-факторизацію[6].
2-факторизація
Якщо граф 2-факторизований, він має бути 2k-регулярним для деякого цілого k. 1891 року Юліус Петерсен показав, що ця необхідна умова є також достатньою — будь-який 2k-регулярний граф є 2-факторизованим[7].
Якщо зв'язкний граф є 2 k-регулярним і має парне число ребер, він також може бути k-факторизованим вибором двох факторів, які складаються з почергових ребер ейлерового циклу[8]. Це стосується лише зв'язкних графів, незв'язні контрприклади містять незв'язне об'єднання непарних циклів або копій графа K2k+1 .
A. G. Chetwynd, A. J. W. Hilton. Regular graphs of high degree are 1-factorizable // Proceedings of the London Mathematical Society. — 1985. — Т. 50, вип. 2. — С. 193—206. — DOI:10.1112/plms/s3-50.2.193..
Рейнгард Дистель. Глава 2: Паросочетания // Теория графов. — Новосибирск : Издательство Института Математики, 2002. — ISBN 5-86134-101-X, УДК 519.17, ББК 22.17.
Ф. Харари. Глава 9. Факторизация // Теория графов. — М. : Едиториал УРСС, 2003. — ISBN 5-354-00301-6.
Thomas Niessen. How to find overfull subgraphs in graphs with large maximum degree // Discrete Applied Mathematics. — 1994. — Т. 51, вип. 1—2. — С. 117—125. — DOI:10.1016/0166-218X(94)90101-5..
Darryn Bryant, Barbara M. Maenhaut, Ian M. Wanless. A Family of Perfect Factorisations of Complete Bipartite Graphs // Journal of Combinatorial Theory. — 2002. — Т. 98, вип. 2. — С. 328—342. — (A). — ISSN0097-3165. — DOI:10.1006/jcta.2001.3240.