, , де - фіксоване значення змінної , - задані функції змінних ,
задачі Коші для диференціального рівняння
, де - незалежні змінні, і ,
є аналітичними функціями незалежних змінних в околі точки . Тоді, якщо права частина даного рівняння є аналітичною функцією всіх своїх аргументів в околі точки їх числових значень, що відповідають точці в силу початкових умов, то в околі цієї точки існує аналітичний розв’язок задачі Коші, і цей розв’язок буде єдиним в класі аналітичних функцій.
Тут під аргументами розуміються не тільки незалежні змінні, а й значення невідомих функцій і їх похідних, що стоять у правій частині, обчислені через початкові умови.
Узагальнення
У 1983 році японський математик Масакі Касівара[en] узагальнив теорему Коші — Ковалевської для систем лінійних диференціальних рівнянь в частинних похідних з аналітичними коефіцієнтами. Доведена їм теорема отримала назву Коші — Ковалевської — Касівари. Ця теорема передбачає когомологічне формулювання у термінах D-модулів.