тривимірні дійсні координати , пов'язані рівнянням:
.
Перехід від одних координат до інших задається формулами:
задає відображення сфери з виколотим полюсом на комплексну площину, яке називається стереографічною проєкцією.
Перетворення Мебіуса
Автоморфізмами сфери Рімана є перетворення Мебіуса. Нехай — матриця із . Її дія на сфері Рімана в термінах проективних комплексних координат — просто множення вектора-стовпця координат на матрицю. В афінних координатах дія виглядає так:
В спеціальній теорії відносності сфера Рімана є моделлю небесної сфери. Перетворення Мебіуса пов'язані з перетвореннями Лоренца.
Перетворення Мебіуса і Лоренца зв'язані також зі спінорами. В квантовій механіці сфера Рімана параметризує стани систем, описуваних 2-вимірним простором (див. q-біт), зокрема спінамасивних часток з спіном 1/2, таких як електрон.
В цьому контексті сферу Рімана називають сферою Блоха і використовують на ній координати «широта-довгота» майже як на звичайній сфері, тільки широту відраховують від полюса і ділять кут на 2, т. ч. (див. мал.)