Снарк «Квітка»
У теорії графів, снарк «Квітка» утворює нескінченне сімейство снарків, відкрите Руфусом Айзексом[en] у 1975 році.[1] Як і інші снарки, снарк «Квітка» зв'язний кубічний граф без мостів з хроматичним індексом рівним 4. Снарк «Квітка» є негамільтонованим і непланарним. Снарки «Квітка» J5 and J7 мають книжкове вкладення 3 та число черг 2.[2] ПобудоваСнарк «Квітка» Jn можна побудувати за допомогою наступного процесу:
За побудовою, снарк «Квітка» Jn є кубічним графом з 4n вершинами та 6n ребрами. Для того, щоб мати необхідні властивості, значення n має бути непарним. Особливі випадкиНазва снарк «Квітка» іноді використовується для J5, який є снарком з 20 вершинами і 30 ребрами.[3] Це один з 6 снарків з 20 вершинами (послідовність A130315 в OEIS). Снарк «Квітка» J5 є гіпогамільтоновим графом[en].[4] J3 є тривіальною варіацією графу Петерсена, створеного шляхом заміни однієї з його вершин трикутником. Цей граф також відомий як граф Тітце.[5] Для того, щоб уникнути тривіальних випадків, снарки, як правило, обмежені, щоб мати обхват не менше 5. За такого обмеження, J3 не є снарком. Галерея
Примітки
|