Розподіл Максвелла — Больцмана

Розподіл Максвелла — Больцмана
Щільність розподілу
Функція розподілу ймовірностей
Параметри
Носій функції
Розподіл імовірностей
Функція розподілу ймовірностей (cdf) де erfфункція помилок
Середнє
Мода
Дисперсія
Коефіцієнт асиметрії
Коефіцієнт ексцесу
Ентропія

Розпо́діл Ма́ксвелла — Бо́льцмана визначає ймовірність того, що частинка ідеального газу перебуває в стані з певною енергією.

Загальний опис

Ймовірність того, що частинка перебуває в стані з енергією згідно з розподілом Больцмана визначається формулою:

,

де μ — хімічний потенціал, T — температура, kB — стала Больцмана, N — число частинок.

 — параметр виродження.

Хімічний потенціал μ визначається з умови

.

Розподіл Больцмана справедливий тільки в тих випадках, коли . Ця умова реалізується при високих температурах.

Граничний випадок квантовомеханічних розподілів

В квантовій статистиці розподіли для ферміонів і бозонів мають різний вигляд і різні властивості. Проте при високій температурі, коли ймовірність знайти частку в будь-якому стані набагато менша за одиницю, як розподіл Фермі — Дірака так і розподіл Бозе — Ейнштейна переходять в розподіл Больцмана.

Розподіл Больцмана в класичній статистиці

В класичній статистиці частка ідеального газу має лише кінетичну енергію.

Число часток з імпульсами в проміжку визначається формулою:

,

де m — маса частки.

У випадку коли дана формула виражена через швидкості, а не через імпульси, вона носить назву розподілу Максвелла

.

Розподіл Больцмана в зовнішньому потенціальному полі

У випадку, коли частки ідеального газу перебувають у зовнішньому полі з потенціалом , це збільшує їхню енергію. В такому випадку, розподіл Больцмана визначає залежну від координати густину часток:

.

Зокрема, у випадку газу в полі тяжіння Землі це співвідношення визначає барометричну формулу

.

Аналогічні формули справедливі для розподілу густини носіїв заряду (електронів чи дірок) у електричному полі в напівпровідникових приладах.

Див. також

Джерела