Парадокс ЯблоПарадо́кс Ябло (англ. Yablo's paradox) — це логічний парадокс, схожий на парадокс брехуна. Був опублікований Стефаном Ябло в 1993 році. Важливість цього парадоксу в тому, що, хоча він схожий на парадокс брехуна і різні його варіанти, цей парадокс, принаймні на перший погляд, уникає автореференції. Правда, багато хто вважає, що це тільки на перший погляд, і автореференція «захована» всередині парадоксу. Парадокс і аналізВізьмімо нескінченне число тверджень:
Зокрема, слід звернути особливу увагу на той факт, що кожне твердження нічого не говорить про свою власну істинність чи хибність, навіть непрямим способом, адже воно стверджує щось лише про твердження з великими номерами, і для всіх них це теж істинно. Візьмімо будь-яке твердження Sk. Помилкове воно чи істинне? Припустимо, що істинне. Тоді Sk+1, Sk+2 і т. д. всі помилкові. Але хибність Sk+2, Sk+3, і т. д. — якраз те, що стверджує Sk+1. Тому отримуємо протиріччя: з одного боку Sk+1 хибне (прямий наслідок істинності Sk), з іншого боку – істинне (прямий наслідок хибності Sk+2, Sk+3, Sk+n). Оскільки ми досягли протиріччя, значить, наше припущення було хибним, і Sk насправді помилкове. Це виконується для будь-якого k. Ресурси Інтернету
Примітки |