Зірка Годжа

Зірка Годжа — важливий лінійний оператор з простору q-векторів в простір (n—q)-форм. Метричний тензор задає канонічний ізоморфізм між просторами q-форм і q-векторів, тому зазвичай зіркою Годжа називають оператор з простору диференціальних форм розмірності q в простір форм розмірності n-q.

Цей оператор був введений Вільямом Годжем.

Означення

Оператор дуальності - оператор на многовиді розмірності у присутності метрики який визначається рівністю

де компонента відмінна від нуля, якщо серед індексів немає повторюваних і тоді якщо та -1, якщо Оператор дуальності задає ізоморфізм простору кососиметричних тензорів типу на простір кососиметричних тензорів типу Іноді оператор дуальності називається оператором Ходжа або *-оператором[1].

Нехай - дійсний векторний простір. Метрика на індукує метрику на його тензорних просторах Це задає невироджений скалярний добуток на диференціальних формах на римановому многовиді:

Інша невироджена форма задається формулою (зпарювання Пуанкаре).

Нехай - римановий n-вимірний многовид. Оператор Ходжа визначається формулою

У ортонормальному базисі його можна задати на мономах

де - додатковий набір ковекторів, а - сигнатура перестановки

Зауваження[2]:

Допоміжні означення

Означимо форму об'єму

де  — невід'ємний скаляр на многовиді , а  — символ Леві-Чивіти. . Навіть за відсутності метрики, якщо , можна визначити контраваріантні компоненти форми об'єму.

тут антисиметричний символ збігається .

У присутності метрики з піднятими індексами може відрізнятися від на знак: . Тут і далі

Уведемо операцію антисиметризації:

. Підсумовування ведеться за всіма перестановками індексів, укладених в квадратні дужки, з урахуванням їх парності . Аналогічно визначається антисимметризація верхніх індексів; антисимметризувати можна тільки за групою індексів одного типу. Приклади: ; .

Джерела

  1. Л.Д.Фаддеев - Математическая физика.
  2. Михаил Вербицкий  - Комплексная алгебраическая геометрия, лекция 7: суперсимметрия и ее приложения. {{cite book}}: символ нерозривного пробілу в |title= на позиції 17 (довідка)

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia