Двоїстість ПуанкареУ математиці, теорема двоїстості Пуанкаре, що названа на честь французького математика Анрі Пуанкаре, є основним твердженням про структуру груп гомологій та когомологій многовиду. Вона стверджує, що всі k-ті групи когомологій n-вимірного орієнтовного замкнутого многовиду M ізоморфні (n − k)-м групам гомологій M: ІсторіяПочатковий варіант теореми двоїстості був сформульований Пуанкаре без доведення в 1893 році. Когомології були винайдені лише через два десятиліття після його смерті, тому ідею двоїстості він сформулював у термінах чисел Бетті: k-те та (n − k)-те числа Бетті замкнутого (компактного без краю) орієнтовного n-вимірного многовиду рівні: Пізніше Пуанкаре дав доведення цієї теореми у термінах двоїстих триангуляцій[1][2]. Сучасне формулюванняСучасне формулювання двоїстості Пуанкаре включає поняття гомологій і когомологій: якщо M — замкнутий орієнтовний n-вимірний многовид, k — ціле число, то існує канонічний ізоморфізм k-ї групи когомологій Hk(M) в (n − k)-ю группу гомологий Hn − k(M):
Цей ізіморфізм визначається фундаментальним класом многовиду :
де — коцикл, обозначає -множення гомологічних та когомологічних класів. Тут наведено гомології і когомології з коефіцієнтами в кільці цілих чисел, але ізоморфізм має місце і для довільного кільця коефіцієнтів. Для некомпактних орієнтовних многовидів когомології в цій формулі необхідно замінити на когомології з компактним носієм. Для групи гомологій та когомологій, за означенням нульові, відповідно, згідно з двоїстістю Пуанкаре, групи гомологій і когомологій при на n-вимірному многовиді є нульовими. Білінійне паруванняНехай M замкнутий орієнтовний многовид, позначемо через кручення групи , і її вільну частину; всі групи гомологій беруться з цілими коефіцієнтами. Існують білінійні відображення: і
Перша форма називається індексом перетину, друга — коефіцієнтом зачеплення. Індекс перетину визначає невироджену двоїстість між вільним частинами груп і , коефіцієнт зачеплення — між крученнями груп і . Твердження про те, що ці білінійні парування визначають двоїстість, означає, що відображення і є ізоморфізмами груп. Цей результат є наслідком двоїстості Пуанкаре і теореми про універсальні коефіцієнти, що дають рівності и . Таким чином, групи є ізоморфними, хоча і не існує природного ізоморфізму, і, аналогічно, . ПриміткиЛітература
|
Portal di Ensiklopedia Dunia