Графи Чана
Графи Чана — це набір із трьох 12-регулярних неорієнтованих графів, кожен із 28 вершинами та 168 ребрами. Усі вони сильно регулярні і мають такі ж параметри та спектр, як і реберний граф повного графа . Графи Чана названо ім'ям Лі-Чієна Чана (англ. Chang Li-Chien), який довів, що, за винятком цих трьох графів, будь-який реберний граф повного графа єдиним чином визначається його параметрами сильно регулярного графа[1]. Зв'язок із графами L(K8)Кожен із цих трьох графів можна отримати перемиканням графа з . Тобто, вибирається підмножина вершин графа , кожне ребро, яке з'єднує вершину з із вершиною не з у графі , видаляється і додаються ребра для кожної пари вершин (знову ж одна належить , а інша не належить), які раніше не були з'єднані ребром. Серед графів, які можна утворити в такий спосіб, є графи Чана. Див. також
Примітки
Література
Посилання
|
Portal di Ensiklopedia Dunia