Векторна величина
Векторна величина — фізична величина, що є вектором (тензором рангу 1). Протиставляється з одного боку скалярним (тензор рангу 0), з іншого — тензорним величинам (строго кажучи — тензор рангу 2 і більше). Також може протиставлятися тим чи іншим об'єктам зовсім іншої математичної природи. У більшості випадків термін вектор вживається у фізиці для позначення вектора в так званому «фізичному просторі», тобто у звичайному тривимірному просторі класичної фізики або в чотиривимірному просторі-часі в сучасній фізиці (в останньому випадку поняття вектора і векторної величини збігаються з поняттям 4-вектора і 4-векторної величини). Вживання словосполучення «векторна величина» практично вичерпується цим. Що ж стосується вживання терміна «вектор», то воно, попри тяжіння за замовчуванням до цього ж поля застосовності, у великій кількості випадків все-таки досить далеко виходить за такі рамки. Вживання термінів вектор і векторна величина у фізиціВ цілому у фізиці поняття вектора практично повністю збігається з таким в математиці. Однак є термінологічна специфіка, пов'язана з тим, що в сучасній математиці це поняття є абстрактним (щодо потреб фізики). В математиці, вимовляючи «вектор», розуміють швидше вектор взагалі, тобто будь-який вектор будь-якого скільки завгодно абстрактного лінійного простору будь-якої розмірності й природи, що, якщо не докладати спеціальних зусиль, може призводити навіть до плутанини (не так, звичайно, по суті, скільки за зручністю слововживання). Якщо ж необхідно конкретизувати, в математичному стилі доводиться або говорити досить довго («вектор такого-то і такого-то простору»), або мати на увазі явно описаний контекст. У фізиці ж практично завжди мова йде не про математичні об'єкти (що мають ті чи інші формальні властивості) взагалі, а про певну їх конкретну («фізичну») прив'язку. З огляду на ці міркування конкретності з міркуваннями стислості й зручності, можна зрозуміти, що термінологічна практика в фізиці помітно відрізняється від математичної. Однак вона не входить до останньої в явне протиріччя. Цього вдається досягти кількома простими «прийомами». Перш за все, до них відносять угоду про вживання терміна за замовчуванням (коли контекст особливо не обмовляється). Так, у фізиці, на відміну від математики, під словом вектор без додаткових уточнень зазвичай розуміється не «якийсь вектор будь-якого лінійного простору взагалі», а перш за все вектор, пов'язаний з «звичайним фізичним простором» (тривимірним простором класичної фізики або чотиривимірним простором фізики релятивістської). Для векторів же просторів, не пов'язаних прямо і безпосередньо з «фізичним простором» або «простором-часом», якраз застосовують спеціальні назви (іноді включають слово «вектор», але з уточненням). Якщо вектор деякого простору, не пов'язаного прямо і безпосередньо з «фізичним простором» або «простором-часом» (і яке важко відразу якось виразно охарактеризувати), вводиться в теорії, він часто спеціально описується як «абстрактний вектор». Все сказане ще більшою мірою, ніж до терміну «вектор», належить до терміну «векторна величина». Замовчування в цьому випадку ще жорсткіше на увазі прив'язку до «звичайного простору» або простору-часу, а вживання щодо елементів абстрактних векторних просторів швидше практично не зустрічається принаймні таке застосування бачиться рідкісним винятком (якщо взагалі не застереженням). У фізиці векторами найчастіше (а векторними величинами — практично завжди) називають вектори двох схожих між собою класів:
|
Portal di Ensiklopedia Dunia