เอกลักษณ์การบวกในทางคณิตศาสตร์ เอกลักษณ์การบวก ของเซตที่มีการดำเนินการของการบวก คือสมาชิกในเซตที่บวกกับสมาชิก x ใด ๆ แล้วได้ x เอกลักษณ์การบวกตัวหนึ่งที่เป็นที่คุ้นเคยมากที่สุดคือจำนวน 0 จากคณิตศาสตร์มูลฐาน แต่เอกลักษณ์การบวกก็สามารถมีในโครงสร้างทางคณิตศาสตร์อื่น ๆ ที่นิยามการบวกเอาไว้ เช่น ในกรุปหรือริง นิยามทั่วไปให้ N เป็นเซตที่มีคุณสมบัติปิดภายใต้การดำเนินการของการบวก ซึ่งเขียนแทนด้วยเครื่องหมาย + เอกลักษณ์การบวกของ N คือ สมาชิก e ที่ทำให้เงื่อนไขนี้เป็นจริง สำหรับทุกสมาชิก n ในเซต N
ตัวอย่าง
การพิสูจน์เอกลักษณ์การบวกมีเพียงหนึ่งเดียวในกรุปกำหนดให้ (G, +) เป็นกรุปหนึ่ง และให้ 0 กับ 0' ในเซต G เป็นตัวแทนของเอกลักษณ์การบวก ดังนั้นสำหรับสมาชิก g ใด ๆ ในเซต G
ซึ่งสามารถทำให้
จะได้ว่า 0 = 0' นั่นคือ 0 กับ 0' คือค่าเดียวกัน เอกลักษณ์การบวกและเอกลักษณ์การคูณ แตกต่างกันในริงที่ไม่อยู่ในภาวะชัดกำหนดให้ R คือริงหนึ่ง และสมมติให้เอกลักษณ์การบวก 0 กับเอกลักษณ์การคูณ 1 มีค่าเท่ากัน นั่นคือ 0 = 1 ดังนั้นสำหรับสมาชิก r ใด ๆ ในริง R
พิสูจน์ได้ว่า R มีภาวะชัด (trivial) นั่นคือ R = {0} (มีสมาชิกเพียงตัวเดียวคือ 0) ในทางกลับกันจะได้ว่า เมื่อ R ไม่อยู่ในภาวะชัด ดังนั้น 0 จะไม่เท่ากับ 1 หมายความว่าเอกลักษณ์การบวกและเอกลักษณ์การคูณไม่เท่ากันนั่นเอง อ้างอิง
ดูเพิ่ม
แหล่งข้อมูลอื่น
|
Portal di Ensiklopedia Dunia