ทศนิยมซ้ำทศนิยมซ้ำ คือจำนวนตรรกยะอย่างหนึ่งในเลขฐานสิบที่มีตัวเลขบางชุดปรากฏซ้ำกันโดยไม่สิ้นสุด ซึ่งการซ้ำของตัวเลขอาจเกิดขึ้นก่อนหรือหลัง หรือคร่อมจุดทศนิยม และชุดตัวเลขที่ซ้ำกันอาจจะมีเพียงแค่ตัวเลขตัวเดียวก็ได้ ตัวอย่างเช่น 1/3 = 0.333333... (อ่านว่า ศูนย์จุดสาม สามซ้ำ) สำหรับทศนิยมที่เขียนให้เลข 0 ตัวสุดท้ายซ้ำกันไปเรื่อยๆ ไม่ถือว่าเป็นทศนิยมซ้ำ เนื่องจากตำแหน่งของทศนิยมจะสิ้นสุดก่อนถึงเลข 0 ตัวสุดท้าย เพราะการเติมเลข 0 ซ้ำกันไปเรื่อยๆ นั้นไม่มีความจำเป็น คือไม่ทำให้ค่าของตัวเลขเปลี่ยนแปลงไปจากเดิม เช่น 0.56000000... = 0.56 ในกรณีพิเศษอย่างหนึ่งของทศนิยมซ้ำที่ไม่จำเป็น แต่บางครั้งก็มีประโยชน์ นั่นคือการซ้ำของเลข 9 เพียงตัวเดียว ซึ่งเลข 9 ที่ซ้ำทั้งหมดสามารถละทิ้งได้และเพิ่มค่าหลักที่อยู่ก่อนหน้าขึ้นไปหนึ่ง เช่น 0.999999... = 1 หรือ 1.77999999... = 1.78 โดยทั่วไปแล้ว รูปแบบการซ้ำของเลข 9 ใช้อธิบายว่าจำนวนมีที่มาอย่างไร หรือเพื่อแสดงให้เห็นถึงความสัมพันธ์ที่น่าสนใจ อาทิ 1 = 3/3 = 3 × 1/3 = 3 × 0.333333... = 0.999999... ดูเพิ่มที่ 0.999... ทศนิยมในประเภทอื่นมี ทศนิยมรู้จบ และทศนิยมไม่รู้จบไม่ซ้ำ
สัญกรณ์ในการเขียนทศนิยมซ้ำให้อยู่ในรูปแบบที่อ่านง่าย ทำได้โดยการเติมขีดแนวนอน (vinculum) ไว้เหนือกลุ่มตัวเลขที่ซ้ำกัน เช่น หรือเติมจุดไว้เหนือกลุ่มตัวเลขที่ซ้ำ ในตำแหน่งเริ่มต้นและตำแหน่งสุดท้าย เช่น อย่างไรก็ตาม การใช้จุดประ 3 จุด (…) เป็นวิธีที่ง่ายที่สุดในการนำเสนอทศนิยมซ้ำ ถึงแม้ว่ายังไม่มีคำแนะนำว่าจะต้องเขียนชุดเลขที่ซ้ำมาก่อนกี่ครั้ง ตัวอย่างเช่น
ในแถบยุโรปมีการใช้สัญกรณ์อย่างอื่นที่ต่างออกไป คือใช้เครื่องหมายวงเล็บล้อมรอบชุดตัวเลขที่ซ้ำ เช่น
เศษส่วนที่มีตัวส่วนเป็นจำนวนเฉพาะในเศษส่วนอย่างต่ำที่มีตัวส่วนเป็นจำนวนเฉพาะหนึ่งจำนวน p ที่นอกเหนือจาก 2 และ 5 (ซึ่งเป็นคู่จำนวนเฉพาะของ 10) จะมีค่าเป็นทศนิยมซ้ำเสมอ ซึ่งช่วงของการซ้ำในตัวเลขของ 1/p จะอยู่ที่ p − 1 (เป็นกลุ่มที่หนึ่ง) หรือเท่ากับตัวหารตัวใดตัวหนึ่งของ p − 1 (เป็นกลุ่มที่สอง) อย่างใดอย่างหนึ่ง ตัวอย่างเศษส่วนในกลุ่มแรกมีดังนี้
ซึ่งรวมไปถึงเศษส่วน 1/47, 1/59, 1/61, 1/97, 1/109 ฯลฯ การคูณบนเศษส่วนในกลุ่มที่หนึ่ง ได้แสดงคุณสมบัติพิเศษอย่างหนึ่งที่น่าสนใจ เช่น
ซึ่งดูเหมือนว่า ตัวเลขที่ซ้ำกันในผลคูณจะได้มาจากการเลื่อนวนของ 1/7 แต่สาเหตุที่ทำให้เกิดพฤติกรรมการเลื่อนวนนั้นมาจากการคำนวณเลขคณิตในตัวเลขหลังทศนิยมเท่านั้น ซึ่งเศษส่วนในกลุ่มที่หนึ่งตัวอื่นๆ เช่น 1/17, 1/19, 1/23 ฯลฯ จะมีคุณสมบัติพิเศษเหล่านี้ด้วยเช่นกัน เศษส่วนในกลุ่มที่สอง คือเศษส่วนที่นอกเหนือจากกลุ่มที่หนึ่งตามเงื่อนไขในตอนต้น อาทิ
โปรดสังเกตว่า การคูณเศษส่วน 1/13 ก็สามารถเกิดการเลื่อนวนในตัวเลขที่ซ้ำกัน และจะแบ่งออกเป็นสองชุด ชุดแรกได้แก่
และอีกชุดหนึ่งได้แก่
การสร้างเศษส่วนจากทศนิยมซ้ำบนทศนิยมซ้ำใดๆ สามารถคำนวณเพื่อเปลี่ยนให้อยู่ในรูปเศษส่วนได้ ดังตัวอย่าง หรืออีกตัวอย่างหนึ่ง และเมื่อทศนิยมซ้ำสามารถเขียนให้อยู่ในรูปเศษส่วนได้ ทศนิยมซ้ำจึงเป็นจำนวนตรรกยะเสมอ วิธีลัดถ้าทศนิยมซ้ำมีค่าอยู่ระหว่าง 0.1 ถึง 1 และมีตัวเลขที่ซ้ำกันเป็นจำนวน n หลักทางขวาของจุดทศนิยม เราจะเขียนเศษส่วนได้โดยให้ตัวเศษเป็นชุดของตัวเลขที่ซ้ำ และเติมตัวส่วนเป็นเลข 9 จำนวน n ตัว เช่น
ถ้าทศนิยมซ้ำมีค่าอยู่ระหว่าง 0 ถึง 0.1 และมีเพียงเลข 0 จำนวน k หลัก นำหน้าชุดเลขซ้ำ n หลัก (ทั้งหมดต้องอยู่ทางขวาของจุดทศนิยม) ดังนั้นตัวเศษจะเป็นชุดเลขซ้ำ และตัวส่วนประกอบด้วยเลข 9 จำนวน n ตัว และเพิ่มเลข 0 จำนวน k ตัวลงไปด้วย เช่น
สำหรับทศนิยมอื่นที่นอกเหนือจากนี้ สามารถเขียนเป็นการบวกของทศนิยมรู้จบ กับทศนิยมซ้ำในรูปแบบใดรูปแบบหนึ่งดังที่กล่าวไว้แล้ว ดังตัวอย่าง
อย่างไรก็ตาม การใช้วิธีลัดจะยังไม่ให้ผลเป็นเศษส่วนอย่างต่ำ ซึ่งจะต้องทำการลดทอนต่อไปด้วยตัวเอง หมายเหตุ 0.999999999... ไม่สามารถเขียนเป็นเศษส่วนได้ ยกเว้นส่วนหนึ่ง แหล่งข้อมูลอื่น |
Portal di Ensiklopedia Dunia