Matematisk konstant
En matematisk konstant är en kvantitet vars värde inte förändras, i motsats till en variabel. De är vanligen reella tal eller komplexa tal och exempel på definierbara tal. Den mest berömda matematiska konstanten är troligtvis talet π ≈ 3,1415926535, som liksom de flesta intressanta konstanter har en oändlig decimalutveckling utan något synligt mönster. I motsats till fysikaliska konstanter kan matematiska konstanter fastställas utan mätningar. EgenskaperAlla tänkbara tal kan förstås räknas som konstanter, men begreppet brukar användas för andra tal än heltalen och enkla bråk som 1/3 eller 0,1. Oftast avses tal som är särskilt intressanta eftersom de representerar något betydelsefullt, till exempel ett geometriskt förhållande som dyker upp i många problem. Matematiska konstanter är ofta irrationella, vilket betyder att de inte kan uttryckas som ett bråk a/b där a och b är heltal, alltså att deras decimalutveckling inte upprepar sig. Många är också transcendenta, vilket innebär att de inte alls kan konstrueras genom enkla räkneoperationer, även om man får ta till rotuttryck. En del av lockelsen i matematiska konstanter är att trots dessa egenskaper försöka hitta mönster i decimalutvecklingen och uttryck för talen som sätter dem i nya sammanhang. Matematiker har genom alla tider intresserat sig för att beräkna konstanter med många siffrors noggrannhet. Ursprungligen var beräkningen av exempelvis π ett problem av praktisk betydelse, men i modern tid och särskilt sedan datorernas inträde kan de vanligaste konstanterna utan större problem beräknas med flera miljoner decimalers noggrannhet. Sådana beräkningar kan vara av praktiskt intresse för matematiker, men utförs främst för prestigens skull och för att testa superdatorer. Vissa konstanter kan dock, trots tillgången på datorer, ännu bara bestämmas med ett fåtal siffrors noggrannhet eftersom deras definitioner inte givit upphov till någon formel som lämpar sig väl för beräkning. Det finns även exempel på oberäkningsbara tal, som trots att de kan definieras har bevisats vara omöjliga att beräkna. Berömda konstanterEtt flertal konstanter är så vanligt förekommande att de tilldelats egna namn. Listor över vilka av dessa som är allra viktigast kan variera i innehåll, men följande fem brukar ingå:
e, Eulers tal, Napiers konstant
Se ävenExterna länkar
|