Hahn-Banachs sats
Inom funktionalanalys, en gren av matematiken, är Hahn-Banachs sats ett ofta använt resultat. Satsen är uppkallad efter Stefan Banach och Hans Hahn. Formulering
Beviset av Hahn-Banachs sats är icke-konstruktivt, då det utnyttjar Zorns lemma. Det går emellertid att undvika Zorns lemma för vissa typer av vektorrum, exempelvis då det är ett så kallat Hilbertrum; det är Riesz representationssats som åstadkommer detta. Enligt denna är varje begränsad linjär funktional på ett Hilbertrum detsamma som en inre produkt med avseende på ett till funktionalen associerat element i Hilbertrummet. Se även
|