AvbildningInom matematik är en avbildning, T, från en mängd X till en mängd Y, en hopparning av vissa element från X med vissa element från Y. Denna parning är sådan att ett X-element paras ihop med bara ett Y-element; X-elementet x paras ihop med Y-elementet Tx.
En operator är en avbildning där mängden X är ett vektorrum och där mängden Y också är ett vektorrum. En funktional är en avbildning där mängden X är ett vektorrum och mängden Y är en delmängd av de komplexa talen. Ofta används begreppet funktion synonymt med avbildning, men ibland görs åtskillnad mellan dessa begrepp. I dessa fall menas med en funktion en avbildning där mängden X kan vara vad som helst, men där mängden Y är en delmängd av de komplexa talen. Mängden av de komplexa talen är ett vektorrum, så en funktional är en särskild slags operator och även en särskild slags funktion. ExempelOperator: Låt X vara mängden av alla deriverbara och reellvärda funktioner på det slutna intervallet [0,1] och låt Y vara mängden av alla kontinuerliga reellvärda funktioner på det slutna intervallet [0,1]: Ett exempel på en operator är den avbildning som parar ihop en deriverbar reellvärd funktion x(t) med dess derivata (som är en kontinuerlig funktion): Funktional: Låt X vara mängden av alla kontinuerliga reellvärda funktioner på det slutna intervallet [0,1]. Ett exempel på en funktional är den bestämda integralen över intervallet [0,1]: Funktion: Låt X vara det slutna intervallet [0,1] och Y också vara samma intervall. Ett exempel på en funktion är: (När det gäller funktioner är det brukligt att skriva T(x) istället för Tx.) Källor
|