Banach-Tarskis paradoxBanach–Tarskis paradox är ett teorem i mängdteorin inom geometrin som påstår följande: Ett givet klot i en tredimensionell rymd, kan sönderdelas i ett ändligt antal delmängder och sedan sättas ihop igen på ett nytt sätt, så att två identiska kopior av originalet erhålls. Det var i en artikel publicerad 1924 som Stefan Banach och Alfred Tarski påvisade följande resultat, av många betraktat som mycket förvånande:[1]
Satsen säger till exempel att en ärta kan delas i ändligt många bitar och sedan pusslas ihop till ett (solitt) jordklot. Teoremet har till och med uttrycks så här:
och i översättning:
Detta utgör paradoxen i Banach-Tarskis teorem. Lösningen ligger i att ”bitarna” är så komplicerade att det inte går att definiera deras volym på ett vettigt sätt. Bitarna har bland annat egenskapen att deras volym förändras när de roteras. Till skillnad från flertalet teorem inom geometrin beror resultatet på vilket mängdteoretiskt axiom som väljs. Teoremet kan bara bevisas när urvalsaxiomet används. [2] Referenser
|
Portal di Ensiklopedia Dunia