National Ignition FacilityNational Ignition Facility, NIF [англ.], Национальный комплекс лазерных термоядерных реакций США ; (национальная зажигательная лаборатория[1]) - научный комплекс по исследованиям инерционного (резонансного)термоядерного синтеза, инициируемого лазерным излучением. Директор проекта NIF — физик Эдвард Мозес[англ.] (Edward Moses). Помимо изучения управляемого термоядерного синтеза - NIF используется для проверки компьютерных моделей поведение ядерного оружия для Агентства ядерной безопасности США (National Nuclear Security Administration[англ.], NNSA), и в первое время существования установки это было её основное применение[1]. Принцип действия и конструкция
При управляемом термоядерном синтезе с инерциальным конфайнментом (от англ. confinement — удержание) и непрямым лазерным обжатием — нагрев капсулы с термоядерным топливом производится настолько быстро, что благодаря инерции образовавшаяся в результате нагрева плазма не успевает разлететься (инерциальное удержание), атомы топлива не успевают рассеяться в окружающем пространстве и в реакторной капсуле на краткое время создаётся сочетание температуры и давления, необходимое для преодоления кулоновского отталкивания протонов (подобный принцип применён в термоядерной бомбах, где разогрев и обжатие дейтерида лития осуществляет инициирующий ядерный взрыв)[1]. В NIF используется мишень-хольраум, внутри которой подвешена миниатюрная металлическая сфера, в которую залита охлаждённая до 15 К смесь дейтерия и трития. Импульс инфракрасного лазера определённой формы (временная характеристика импульса строго регламентируется) расщепляется на 192 луча, каждый лучик проходит четыре раза через свой лазерный усилитель, каждый из усиленных лучей попадает в свой узел преобразования частоты, где исходное инфракрасное излучение превращается в ультрафиолетовое. Ультрафиолетовые лучи направляются в систему фокусировки и через окна в мишени-хольрауме освещают её внутренние стенки, выбивают из них фотоны рентгеновского излучения, которые уже нагревают и обжимают сферу с термоядерным топливом. Точность фокусировки лучей ультрафиолета составляет 10 мкм. За 10 нс мишень нагревается до 3 млн градусов, внешние слои капсулы с топливом испаряются, отдача давит на внутренние слои капсулы, что на 2 наносекунды обеспечивает давление около 200 млрд атмосфер, мишень сжимается приблизительно в 30 раз до плотности 1–1,3 кг/см³ (в 100 раз большей, чем у свинца), и в центре мишени начинается реакция слияния ядер, которая длится несколько десятков пикосекунд[1]. Мощность импульса лазерной установки достигает 500 ТВт. На мишень попадает ультрафиолет с длиной волны 351 нм. Температура в центре мишени достигает 100 миллионов градусов. Дейтерий-тритиевая смесь в центре мишени сжимается до плотности около 1 кг/см3, давление эквивалентно 300 миллиардам атмосфер[2][3] В мишени протекает термоядерная реакция: — ядро дейтерия и ядро трития сливаются с образованием ядра гелия (альфа-частицы) и нейтрона, выносящего большую энергию (17,6 МэВ). Мощность этой термоядерной реакции, протекающей за пикосекунды цикла работы установки, сравнима с мощностью солнечного излучения, попадающего на Землю[1].
Затраты энергии на инициирование реакции составляют около 400 МДж, расходы энергии на вспомогательные нужды – ещё около 100 МДж, при этом достигнут выход энергии в экспериментах в 2021 году 3,05 МДж, Итоговый энергетический баланс NIF отрицательный, это не энергетическая, а исследовательская установка. Лазерная установка строилась по технологиям 90x годов и имеет КПД всего лишь 0,5 %. Лазерный импульс притерпевает очень не эффективные преобразования, ИК спектр преобразуется в УФ например. Более того, в её конструкции нет электрических генераторов, и полученное в ходе реакции тепло рассеивается с помощью градирен[1].
В 1957 году создатель термоядерной бомбы Эдвард Теллер обсуждал с коллегами вариант получения энергии при взрыве термоядерного устройства малой мощности в трёхсотметровой полости в толще гранита[1]. Лазерное обжатие термоядерной мишени придумал изобретатель лазера советский физик Николай Басов. В 1964 году он с коллегами опубликовал в Журнале экспериментальной и теоретической физики работу, в которой описал нагрев плазмы лазерным излучением, а в 1968 году — результаты эксперимента, в котором они наблюдали нейтроны при облучении дейтерида лития мощным лазером. Затем американский физик из Ливерморской национальной лаборатории Джон Накколс[англ.] (англ. John Hopkin Nuckolls) опубликовал в 1972 году статью с эскизным описанием и установки для лазерного термоядерного синтеза и расчётом её коммерческой эффективности[1]. Накколс с соавторами описал преимущество лазерного обжатия перед механическим — по их расчётам выходило, что необходимую для зажигания термоядерной реакции плотность вещества можно достигнуть посредством равномерного облучения сферической мишени лазерами. Предел давления, достижимой химическим взрывом — 107 атм, а лазерное обжатие по их расчётам должно дать давление 108–1011 и более атмосфер[1]. Группа Накколса предложила установку, в которой лазерные импульсы, несущие огромную энергию сразу со всех сторон, должны были испарить внешние слои миллиметровой сферической мишени, которые при этом будут давить на вещество в её центре, и там получатся давление и температура, достаточные для запуска термоядерной реакции в смеси дейтерия и трития. Начавшаяся реакция при этом дожна была «поджечь» и остальное вещество мишени[1]. Теоретические разработки показали, что для обжатия газообразной мишени нужна энергия лазеров порядка 100 МДж, что было недостижимо на тот момент. поэтому исследователи придумали вариант твёрдой мишени из замороженной дейтерий-тритиевой смеси. Холодная мишень за счёт механической прочности и ударной волной сжатия в твёрдом теле должна была разогреть центр мишени, что требовало энергии облучения около 2–3 МДж. В дальнейшем учёные предложли принцип непрямого обжатия — свет лазеров облучал контейнер, внутри которого располагается мишень. Под воздействием лазерного излучения внутренние стенки контейнера излучают рентгеновские фотоны, которые уже облучают мишень. Такой контейнер получил название хольраум (от нем. hohlraum — пустое пространство, полость — этот термин был испольвзаон Максом Планком для описания модели абсолютно чёрного тела). Преобразование лазерного излучения в рентгеновское достаточно эффективно — расчётный выход рентгеновских фотонов должен составлять 70–80 % энергии лазерного излучения[1]. ИсторияСтроительство научного комплекса NIF началось в 1997 году, официальная закладка фундамента основного здания NIF состоялась 29 мая 1997 года[4]. На возведение всего комплекса ушло 12 лет и примерно 4 млрд долл[источник не указан 760 дней]. 31 марта 2009 года было объявлено об окончании строительства NIF[5]. В этом же году был проведён первый пробный запуск. К 30 сентября 2012 года, после проведения более чем тысячи экспериментов, проекту так и не удалось продемонстрировать термоядерную реакцию. Проект оказался на грани закрытия, вопрос о его дальнейшем финансировании был поставлен перед Конгрессом США[6][7]. В 2018 году, после серии технических улучшений, проекту удалось продемонстрировать термоядерную реакцию, выделившую 3,6 % от входной энергии лазера[8]. В эксперименте в августе 2021 года в термоядерной реакции выделилось 1,3 МДж, примерно 70 % от входной энергии лазеров накачки. Этого удалось достичь, заменив водород-дейтериевую мишень на алмазную, благодаря чему возросло поглощение вторичных рентгеновских лучей, создаваемых лазерным импульсом, что в свою очередь увеличило эффективность имплозии[9]. Однако последующие попытки воспроизвести этот результат не были успешными. В октябре 2021 и позднее удалось достичь выхода в 400–700 КДж, в два и более раз меньше 1,3 МДж; эта энергия не достигает установленных учёными значений для порога зажигания самоподдерживающейся термоядерной реакции[10]. В эксперименте 5 декабря 2022 года учёные впервые в истории добились положительного выхода энергии в ходе реакции термоядерного синтеза — удалось получить около 3,15 мегаджоуля энергии, что превысило использованную в лазерах энергию — 2,05 мегаджоуля (энергии было получено даже больше, чем планировалось, что привело к повреждению диагностического оборудования и усложнило анализ результатов[11][12][13]). Хотя при этом — для накачки системы лазеров потребовалась энергия, превышающая 400 мегаджоулей[14]. В экспериментах 2023 года этот успех (превышением энерги выхода над затраченной) был повторён трижды (первый раз 30 июля[15], далее в октябре и ноябре)[16]; был получен ещё лучший выход — 3,88 МДж при той же энергии входа[17]. См. также
Ссылки
Примечания
|
Portal di Ensiklopedia Dunia