Argonaute — белки, которые являются каталитическими компонентами RISC (RNA-induced silencing complex) — белкового комплекса, обеспечивающего сайленсинг генов по механизму РНК-интерференции (RNAi).
Белки Argonaute связывают малые интерферирующие РНК (siRNA) и имеют эндонуклеазную активность по отношению к мРНК, комплементарным связанному фрагменту siRNA.[1]
Молекулярные механизмы связывания РНК белками Argonaute установлены при помощи рентгеноструктурной кристаллографии РНК-связывающего домена. Фосфорилированный 5'-конец цепи РНК попадает в консервативный основный карман и образует контакты через двухвалентные катионы (например, Mg++) и путём ароматического стэкинга между 5'-нуклеотидом в siRNA и консервативным остатком тирозина. Этот сайт, по-видимому, образует «сайт нуклеации» для связывания siRNA с её мишенью мРНК.[2]
У эукариот белки Argonaute идентифицированы в высоких концентрациях в районах цитоплазмы клеток, известных как цитоплазматические тельца, в которых разрушаются мРНК.[3]
Белки Argonaute также участвуют в образовании и регуляции активности микроРНК.
- Ago2 разрезает пре-микроРНК и образует дополнительный предшественник (ac-pre-miRNA);[4]
- Ago2 также входит в RISC и опосредует связывание микроРНК с 3'НТР, соответствующей мРНК и ингибирует трансляцию (в некоторых случаях - вызывает деаденилирование и деградацию мРНК). Ago2 взаимодействует с TRBP и Dicer (который процессирует пре-миРНК в миРНК) и образует вместе с ними тройной комплекс, который также связывает миРНК, на базе которого происходит дальнейшая сборка RISC путём присоединения других белков.[5]
Семейство белков Argonaute представлено среди эукариот, некоторых архей и даже бактерий, например, Aquifex aeolicus. По данным сравнительной геномики, семейство Argonaute, по-видимому, произошло от факторов инициации трансляции[6].
Роль в восприимчивости к вирусной инфекции
Мыши с дефицитом Argonaute 4 (AGO4), инфицированные вирусом гриппа, имеют значительно более высокие вирусные титры in vivo по сравнению обычными мышами[7], а также в отличие от мышей с дефицитом AGO1 или AGO3[8]. Таким образом, специфическая активация функции AGO4 в клетках млекопитающих может быть эффективной противовирусной стратегией.
Ссылки
- ↑ Rand TA, Petersen S, Du F, Wang X. (2005). Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123(4):621-9.
- ↑ Ma J., Yuan Y., Meister G., Pei Y., Tuschl T., Patel D. Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein (англ.) // Nature : journal. — 2005. — Vol. 434, no. 7033. — P. 666—670. — doi:10.1038/nature03514. — PMID 15800629.
- ↑ Sen GL, Blau HM. (2005). Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7(6):633-6.
- ↑ Diederichs S., Haber D. A. Dual Role for Argonautes in MicroRNA Processing and Posttranscriptional Regulation of MicroRNA Expression
(December 2007) Cell, Volume 131, Issue 6, 14 1097-1108 PMID 18083100
- ↑ Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R. (Aug 2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 4;436(7051):740-4. PMID 15973356
- ↑ Anantharaman V., Koonin E., Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism (англ.) // Nucleic Acids Res : journal. — 2002. — Vol. 30, no. 7. — P. 1427—1464. — doi:10.1093/nar/30.7.1427. — PMID 11917006.
- ↑ Adiliaghdam, F., Basavappa, M., Saunders, T. L., Harjanto, D., Prior, J. T., Cronkite, D. A., ... & Jeffrey, K. L. (2020). A Requirement for Argonaute 4 in Mammalian Antiviral Defense. Cell reports, 30(6), 1690-1701. doi:10.1016/j.celrep.2020.01.021 PMC 7039342 PMID 32049003
- ↑ Van Stry, M., Oguin, T. H., Cheloufi, S., Vogel, P., Watanabe, M., Pillai, M. R., ... & Bix, M. (2012). Enhanced susceptibility of Ago1/3 double-null mice to influenza A virus infection. Journal of virology, 86(8), 4151-4157. doi:10.1128/JVI.05303-11 PMC 3318639 PMID 22318144
|