Ячейка ГилбертаЯче́йка Ги́лберта (англ. Gilbert cell) в электронике — схема четырёхквадрантного аналогового умножителя, предложенная Барри Гилбертом в 1968 году. Она представляет собой ядро умножителя на трёх дифференциальных каскадах, дополненное диодными преобразователями входных напряжений в токи (V1, V2 на схемах). Ячейка Гилберта, в модифицированной бета-зависимой форме, выполняет функцию смесителя или балансного модулятора в большинстве современных радиоприёмников и сотовых телефонов[1]. В отличие от предшествовавших схем умножителей, оперировавших напряжениями, элементарная ячейка Гилберта оперирует исключительно токами — множители на входе задаются не напряжениями, а токами, их произведение считывается также в форме тока. В схеме Гилберта были впервые скомпенсированы температурный дрейф и нелинейность традиционных умножителей; уже в 1968 первые промышленные образцы демонстрировали полную погрешность умножения менее 1 % при рабочих частотах до 500 МГц[2]. Первые прецизионные умножители на ячейке Гилберта c управлением напряжениями (AD534) имели точность 0,1 % ценой уменьшения полосы до 1 МГц[3]. В советской литературе умножители по схеме Гилберта именовались умножители с нормировкой токов[4], умножители на управляемых током делителях тока[5]; первая советская микросхема такого рода, 525ПС1, была анонсирована в 1979 году[6][4]. В современных англоязычных учебниках понятие ячейки Гилберта трактуется расширительно и ошибочно переносится на известное «до Гилберта» ядро умножителя на трёх дифкаскадах[7]. История изобретенияВ 1960-х годах начался переход от схем на дискретных транзисторах к монолитным интегральным схемам (ИС). Интеграция всех компонентов схемы на одном кристалле позволила реализовать на практике схемы, которые были неработоспособны в дискретном исполнении — в том числе, схему четырёхквадрантного умножителя на трёх дифференциальных каскадах с перекрёстными выходами. Её изобрёл в 1963 году Говард Джонс из компании Honeywell (патент США 3241078)[7]. Такие схемы выпускались серийно (например, 526ПС1[8]), но не подходили для массового применения. Из-за малого допустимого уровня входных напряжений, сопоставимого с напряжением смещения нуля ОУ[9], она была чувствительна к температурному дрейфу, требовала точной подстройки нуля, и обладала высоким уровнем шума[10]. Коэффициент перемножения был пропорционален квадрату абсолютной температуры[9]. В 1968 году техник Tektronix Барри Гилберт предложил решение — переход от управления напряжениями к управлению токами:
Гилберт показал, что, хотя его схема оставалась чувствительной к разбалансу параметров отдельных транзисторов, её поведение мало зависело от типового коэффициента усиления транзисторов и омического сопротивления их pn-переходов, заданных производственным процессом[11]. В этом смысле первая схема ячейки Гилберта была бета-независимой[12]: искажения, вносимые входными диодами (V1 и V2 на схеме), компенсировали искажения, вносимые транзисторами дифференциальных каскадов[13]. На практике, удачная с точки зрения искажений ориентация V1 и V2 оказаласть неудобной и в производстве, в практическом применении[12]. Поэтому во второй версии своего умножителя Гилберт перенёс V1 и V2 «вверх» (к положительной шине питания) — это упростило и топологию ИС, и её привязку к реальной аппаратуре, так как теперь оба входных канала управлялись токами одного направления[12]. При этом выросли шумы, искажения и температурный дрейф параметров, а зависимость от коэффициента усиления по току выросла втрое (схема стала бета-зависимой)[12]. Именно эта схема была запатентована Гилбертом и Tektronix в 1972 году (заявка с приоритетом от 13 апреля 1970)[14] и именно на её основе были спроектированы практически все серийные перемножители (в том числе массовая Motorola MC1495[15] и её советский аналог 525ПС1[4]) — функциональность оказалась важнее[12]. Будучи функционально простыми, незавершёнными узлами, эти ИС имели тридцать и более внутренних компонентов — так, в MC1495 шестнадцать активных транзисторов, четыре транзистора в диодном включении (в том числе V1, V2) и десять резисторов двух номиналов[15]. Токовое управление являлось большим неудобством[16], и поэтому были выпущены более сложные ИС с управлением напряжениями и стабилизацией входных каскадов (525ПС2 — 27 активных транзисторов, 34 резистора[17]). Развитием схемы Гилберта стал универсальный аналоговый перемножитель (УАПС, пример — AD633[18]), в котором в цепь обратной связи по выходному сигналу был добавлен четвёртый, так называемый Z-дифкаскад, компенсирующий нелинейность базовой ячейки.[19]. Сосредоточившись на анализе свойств замкнутых контуров, образованных эмиттерными переходами V1, V2 и дифференциальных каскадов, Гилберт пришёл к концепции транслинейной схемотехники и вывел принцип транслинейности (впервые опубликован в 1975[21])[22]. Большинство современных англоязычных учебных пособий по схемотехнике (например, Drentea[23], Razavi[24]) называют «ячейкой Гилберта» не изобретение Гилберта, а предшествовавший ему умножитель Говарда Джонса, управляемый не токами, а напряжениями[7]. Сам Гилберт неоднократно указывал на ошибочность этого мнения, но многолетнее заблуждение оказалось сильнее[7]. Примечания
Литературана русском языке
на английском языке
|
Portal di Ensiklopedia Dunia