Число ОреЧисло Оре — натуральное число, среднее гармоническое делителей которого является целым числом. Понятие числа Оре введено Ойстином Оре в 1948 году. Первые несколько чисел Оре: Например, число Оре 6 имеет делители 1, 2, 3 и 6. Их гармоническое среднее является целым числом: Число 140 имеет делители 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70 и 140. Их гармоническое среднее: 5 является целым числом, а значит, 140 является числом Оре. Числа Оре и совершенные числаДля любого целого числа произведение гармонического среднего и среднего арифметического его делителей равно самому числу , что непосредственно следует из определений. Таким образом, является числом Оре с гармоническим средним делителей в том и только в том случае, когда среднее арифметическое делителей является частным от деления на . Оре показал, что любое совершенное число является числом Оре. Так как сумма делителей совершенного числа в точности равна , среднее делителей равно , где означает число делителей числа . Для любого число нечётно тогда и только тогда, когда является полным квадратом, в противном случае каждому делителю числа можно сопоставить другой делитель — . Но никакое совершенное число не может быть полным квадратом, это следует из известных свойств чётных совершенных чисел, а нечётные совершенные числа (если такие существуют) должны иметь множитель вида , где . Таким образом, для совершенного числа число делителей чётно и среднее делителей является произведением на . Таким образом, является числом Оре. Оре высказал предположение, что не существует нечётных чисел Оре, кроме 1. Если гипотеза верна, то нечётных совершенных чисел не существует. Границы и компьютерный поискПоказано, что любое нечётное число Оре, большее 1, должно иметь степень простого делителя больше 107, а также, что любое такое число должно иметь по меньшей мере три различных простых делителя. Кроме того, установлено, что не существует нечётных чисел Оре, меньших 1024. Предпринимались попытки получить с помощью компьютера список всех малых чисел Оре, в результате были найдены все числа Оре до 3.75×1010 и все числа, для которых гармоническое среднее не превышает 300. ПримечанияЛитература
|