p ( n ) = 1 + ( ∑ m = 1 2 n [ [ n 1 + ( ∑ j = 2 m [ ( j − 1 ) ! + 1 j − [ ( j − 1 ) ! j ] ] ) ) ( 1 n ) ] ] ) {\displaystyle p(n)=1+\left(\sum _{m=1}^{2^{n}}\left[\left[{\frac {n}{1+\left(\sum _{j=2}^{m}\left[{\frac {(j-1)!+1}{j}}-\left[{\frac {(j-1)!}{j}}\right]\right]\right)}})^{\left({\frac {1}{n}}\right)}\right]\right]\right)}
∑ n = 1 ∞ 1 n s = ∏ p 1 1 − 1 p s {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod _{p}{\frac {1}{1-{\frac {1}{p^{s}}}}}}
1 1 − p − s = 1 + p − s + p − 2 s + … {\displaystyle {\frac {1}{1-p^{-s}}}=1+p^{-s}+p^{-2s}+\ldots }
‖ 3 mod 4 , x ‖ − ‖ 1 mod 4 , x ‖ x / log x ≈ 1 + 2 ∑ sin ( γ log x ) γ , L ( 1 2 + i γ ) = 0 , L ( s ) = 1 1 s − 3 1 s + 5 1 s − 7 1 s + ⋯ {\displaystyle {\frac {\|3\mod 4,x\|-\|1\mod 4,x\|}{{\sqrt {x}}/\log x}}\approx 1+2\sum {\frac {\sin(\gamma \log x)}{\gamma }},L\left({\frac {1}{2}}+i\gamma \right)=0,L(s)={\frac {1}{1^{s}}}-{\frac {3}{1^{s}}}+{\frac {5}{1^{s}}}-{\frac {7}{1^{s}}}+\cdots }
X → = ( X 1 X 2 ⋯ X n ) {\displaystyle {\vec {X}}={\begin{pmatrix}X_{1}\\X_{2}\\\cdots \\X_{n}\end{pmatrix}}} S → X = ( X 1 + X 2 + ⋯ + X n X 2 + ⋯ + X n ⋯ X n ) {\displaystyle {\vec {S}}_{X}={\begin{pmatrix}X_{1}+X_{2}+\cdots +X_{n}\\X_{2}+\cdots +X_{n}\\\cdots \\X_{n}\end{pmatrix}}} S → X = ( 1 1 ⋯ 1 0 1 ⋯ 1 ⋯ ⋯ ⋯ ⋯ 0 0 ⋯ 1 ) X → {\displaystyle {\vec {S}}_{X}={\begin{pmatrix}1&1&\cdots &1\\0&1&\cdots &1\\\cdots &\cdots &\cdots &\cdots \\0&0&\cdots &1\end{pmatrix}}{\vec {X}}} S i , j = ∑ k = 0 N − max { i , j } X i + k , j + k {\displaystyle S_{i,j}=\sum _{k=0}^{N-\max\{i,j\}}{X_{i+k,j+k}}} E = E ( X 1 X > x 0 ) = μ ( 1 − Φ ( x 0 − μ σ ) ) + σ 2 π e − 1 2 ( x 0 − μ σ ) 2 {\displaystyle E=E(X1_{X>x_{0}})=\mu \left(1-\Phi {\Bigl (}{\frac {x_{0}-\mu }{\sigma }}{\Bigr )}\right)+{\frac {\sigma }{\sqrt {2\pi }}}e^{-{\frac {1}{2}}\left({\frac {x_{0}-\mu }{\sigma }}\right)^{2}}} E Q ( e i u M T ) = E Q ( e i u σ μ T + i u ∑ J i ) = E Q ( e i u σ μ T ) E Q ( e i u ∑ J i ) = e − σ 2 u 2 T 2 e − λ T ( 1 − ϕ J ( u ) ) , ϕ J ( u ) = E Q ( e i u J ) {\displaystyle E^{Q}\left(e^{iuM_{T}}\right)=E^{Q}\left(e^{iu\sigma \mu _{T}+iu\sum {J_{i}}}\right)=E^{Q}\left(e^{iu\sigma \mu _{T}}\right)E^{Q}\left(e^{iu\sum {J_{i}}}\right)=e^{-{\frac {\sigma ^{2}u^{2}T}{2}}}e^{-\lambda T{\bigl (}1-\phi _{J}(u){\bigr )}},\phi _{J}(u)=E^{Q}(e^{iuJ})}
r t + 1 = r t ( 1 − θ ) + θ μ + σ r t δ W t {\displaystyle r_{t+1}=r_{t}(1-\theta )+\theta \mu +\sigma {\sqrt {r_{t}}}\delta W_{t}}
r = 1 − ∏ i = 1 N ( 1 − R i ) 1 N {\displaystyle r=1-\prod _{i=1}^{N}(1-R_{i})^{\frac {1}{N}}}
( 1 + 2 ) 1000 {\displaystyle {\bigl (}1+{\sqrt {2}}{\bigr )}^{1000}}
( 1 + 2 ) 1000 + ( 1 − 2 ) 1000 {\displaystyle {\bigl (}1+{\sqrt {2}}{\bigr )}^{1000}+{\bigl (}1-{\sqrt {2}}{\bigr )}^{1000}}