Троичная логикаТрои́чная ло́гика (трёхзначная логика или тернарная логика) — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая[источник не указан 204 дня] многозначная логика, является простейшим расширением двузначной логики. КлассификацияРазличают чёткую ТЛ, в которой все три значения определяются как конкретные числовые значения (например, , , ), а также ряд нечётких троичных логик с одним, двумя и тремя нечёткими логическими значениями (выражаемые числами как диапазоны значений). Нечёткая троичная логика с одним нечётким значением дополняет значения («ложь») и («истина») нечётким значением «неопределённость», занимающую (в сравнении с вероятностной логикой) весь интервал . Примером значений ТЛ с двумя нечёткими значениями можно назвать («меньше», «равно», «больше»), («отрицательно», 0, «положительно»). Высокий практический интерес представляет ТЛ с тремя нечёткими значениями, так как любая измеряемая (например, посредством датчиков) информация верна лишь с определенным допуском, то есть в некотором диапазоне значений. Примерами значений таких логик могут быть тройки («меньше», «равно, в пределах допуска», «больше»), («уклон влево», «прямо, в допустимых пределах», «уклон вправо»), («холодно», «прохладно», «жарко») и другие. Алгебраические свойстваТроичная логика, в отличие от двоичной, не булево кольцо и обладает собственным математическим аппаратом — системой аксиом, которые определяют над множеством {«1», «0», «1»} одноместные и двухместные операции, а также выводимыми из них свойствами. Для конъюнкции и дизъюнкции в тройной логике сохраняются коммутативный (переместительный), ассоциативный (сочетательный) и дистрибутивный (распределительный) законы. Несколько свойств образуются благодаря особенности отрицания Лукасевича: Однако из-за наличия третьего значения некоторые законы двоичной логики оказываются неверными и для них сформулированы троичные аналоги. Так, вместо закона противоречия стали применять закон несовместности состояний, вместо закона исключённого третьего — закон полноты состояний (закон исключённого четвёртого), вместо неверного закона Блейка—Порецкого применяют трёхчленный закон Блейка—Порецкого. Физическая реализацияПри физической реализации троичным функциям в троичной логике соответствуют троичные логические элементы, в общем случае не обязательно электронные. Схемы с 3-4-значной логикой дают возможность сократить количество используемых логических и запоминающих элементов, а также межэлементных соединений. Схемы трёхзначной логики легко реализуются на КМОП-технологии. Трёхзначная логика обладает большей выразительностью, чем двухзначная. На основе троичных элементов — троичной ферритодиодной ячейки разработки Николая Брусенцова — в 1959 году в вычислительном центре МГУ спроектирована малая ЭВМ «Сетунь», выпущена в 46 экземплярах. ЛогикиЛогики Клини и ПристаНиже показаны таблицы истинности для логических операций «Сильной логики неопределённости» (strong logic of indeterminacy) Стивена Клини и «Парадоксальной логики» (logic of paradox, LP) Грэма Приста[англ.]. Обе логики имеют три логических значения — «ложь», «неопределённость» (в логике Приста — «парадокс») и «истина», которые в логике Клини обозначаются буквами F (false), U (unknown), T (true), а в логике Приста числами −1, 0 и 1[1].
Значение U в логике Клини присваивается выражениям, которые реально имеют значение T или F, но в данный момент это значение по каким-то причинам неизвестно, в результате чего возникает неопределённость. Тем не менее, результат логической операции с величиной U может оказаться определённым. Например, поскольку T & F = F и F & F = F, то и U & F = F. В более общем виде: если для некоторой логической операции oper выполняется соотношение В отличие от логики Клини, в логике Приста значение 0 определено и считается одновременно и истинным, и ложным (парадоксальным). Разница заключается в определении тавтологий. Тогда как в логике Клини только одно выделенное истинностное значение — это T, в логике Приста оба значения — 1 и 0 — являются выделенными. При численном обозначении логических значений (-1, 0, 1) логические операции эквивалентны следующим численным операциям: Операция импликации в логиках Клини и Приста определяется формулой, аналогичной формуле двоичной логики:
Таблицы истинности для неё
Это определение отличается от определения импликации, принятого в логике Лукасевича. Функциональный подходНазовём функцию функцией трёхзначной логики, если все её переменные принимают значения из множества {0,1,2} и сама функция принимает значения из этого же множества. Примеры функций: max(x, y), min(x, y), x+1 (mod 3). Обозначим множество всех функций трёхзначной логики. Под операцией над функциями будем понимать суперпозицию. Класс функций K из назовём замкнутым, если любая суперпозиция функций из K принадлежит K. Система функций класса K называется полной, если любая функция из K может быть представлена суперпозицией функций этой системы. Полная система называется базисом, если никакая функция из этой системы не может быть представлена суперпозицией остальных функций этой системы. Доказано, что в существует конечный базис (в частности, состоящий из одной функции). Замкнутый класс K называется предполным, если он не совпадает с , но добавление любой функции, ему не принадлежащей, порождает . С. В. Яблонским доказано[2], что в существует 18 предполных классов. Также доказано, что все они имеют конечные базисы, в частности, состоящие из функций, зависящих не более чем от двух переменных[3]. Ю. И. Янов и А. А. Мучник доказали[4], что в существуют классы функций, не имеющие базиса, и классы функций, имеющие бесконечный базис. Отсюда следует, что множество замкнутых классов в имеет мощность континуума. Этим трёхзначная (и любая многозначная) логика существенно отличается от двухзначной, где, как доказано Постом[5], все замкнутые классы имеют конечный базис и множество замкнутых классов счётно. Использование в базах данныхВ некоторых системах управления базами данных используется специальное значение UNKNOWN, которое может быть результатом логической операции, наряду со значениями TRUE и FALSE. Смысл значения UNKNOWN — «неизвестность», то есть неопределённый результат операции. Значение UNKNOWN может использоваться тогда, когда в применяемой системе разработки программного обеспечения используется специальное значение NULL. Операция сравнения возвращает значение UNKNOWN, если один или оба из её операндов равны NULL, а также некоторые логические операции, если одним из их операндов является значение UNKNOWN. Условными операторами языков программирования значение UNKNOWN обрабатывается аналогично FALSE, то есть конструкция вида: if UNKNOWN then a := 1 else a := 2 приведёт к присваиванию переменной a значения 2. Правила операций с UNKNOWN
См. также
Примечания
Литература
Ссылки
|
Portal di Ensiklopedia Dunia