Тождество Брахмагупты — Фибоначчи, называемое также тождеством Брахмагупты или тождеством Диофанта[1][2][3][4] — алгебраическое тождество, показывающее, как произведение двух сумм квадратов можно представить в виде суммы квадратов (причём двумя способами):
В терминах общей алгебры, это тождество означает, что множество всех сумм двух квадратов замкнутоотносительно умножения.
Впервые данное тождество было опубликовано в III веке н. э. Диофантом Александрийским в трактате «Арифметика» (книга III, теорема 19). Индийский математик и астрономБрахмагупта в VI веке, вероятно, независимо открыл и несколько обобщил тождество, добавив произвольный параметр :
В самом деле, возведя обе части в квадрат, получаем:
или согласно определению модуля:
Применения
Решение уравнения Пелля
Как уже говорилось выше, Брахмагупта применял своё тождество (3), (4) при решении уравнения Пелля[5]:
где — натуральное число, не являющееся квадратом. Брахмагупта сначала подбирал начальное решение уравнения, затем записывал тождество в следующем виде[5]:
Отсюда видно, что если тройки и образуют решение уравнения x2 − Ay2 = k, то можно найти ещё одну тройку
и т. д., получая бесконечный ряд решений.
Общий метод решения уравнения Пелля, опубликованный в 1150 году Бхаскарой II (метод «чакравала»), также опирается на тождество Брахмагупты.
Разложение целого числа на сумму двух квадратов
В сочетании с теоремой Ферма — Эйлера, тождество Брахмагупты — Фибоначчи показывает, что произведение квадрата целого числа на любое количество простых чисел вида представимо в виде суммы квадратов.
История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.