Теорема Рамсея — теоремакомбинаторики о разбиениях множеств, сформулированная и доказанная английским математиком Фрэнком Рамсеем в 1930 году[1]. Встречается в литературе в разных формулировках. Эта теорема положила начало теории Рамсея.
Тогда существует число , обладающее следующим свойством: если все -элементные подмножества -элементного множества произвольным образом разбиты на два непересекающихся семейства и , то либо существует -элементное подмножество множества , все -элементные подмножества которого содержатся в , либо существует -элементное подмножество, все -элементные подмножества которого содержатся в .
Общий случай
Пусть множество имеет элементов. Рассмотрим его -подмножества , обозначим совокупность всех этих подмножеств , упорядоченные -разбиения , числа , задающие разбиение .
Тогда для любого упорядоченного -разбиения множества существует такое минимальное число , что если , то существует — подмножество множества , то есть такое -подмножество множества , все -подмножества которого содержатся в [2].
Формулировка на языке теории графов
Для любых натуральных чисел в любой -цветной раскраске рёбер достаточно большого полного графа содержится полный подграф с вершинами для некоторого цвета . В частности, для любых и , достаточно большой полный граф двухцветной (чёрно-белой) раскраски, содержит либо полный чёрный подграф из вершин, либо полный белый подграф из вершин.
Числа Рамсея
Минимальное число , при котором это выполнено, называют числом Рамсея.
Например, равенство означает, что с одной стороны в любой двухцветной раскраске полного графа найдётся одноцветный треугольник, а с другой стороны — то, что полный граф допускает двухцветную раскраску без одноцветных треугольников.
В общем случае для -цветной раскраски используется обозначение для минимального числа вершин, обеспечивающего существование для некоторого цвета .
База индукции., так как 1-вершинный граф можно считать полным графом любого цвета.
Индукционный переход. Пусть и . Рассмотрим полный чёрно-белый граф из вершин. Возьмём произвольную вершину и обозначим через и множества инцидентные в чёрном и белом подграфе соответственно. Так как в графе вершин, согласно принципу Дирихле (комбинаторика), либо , либо .
Пусть . Тогда либо в (и следовательно во всём графе) есть белый , что завершает доказательство, либо в есть чёрный , который вместе с образует чёрный . Случай рассматривается аналогично.
Замечание. Если и оба чётны, неравенство можно усилить: .
Доказательство. Предположим, и оба чётны. Положим и рассмотрим чёрно-белый граф из вершин. Если степень -й вершины в чёрном подграфе, то, согласно лемме о рукопожатиях, — чётно. Поскольку нечётно, должно существовать чётное . Для определённости положим, что чётно. Обозначим через и вершины инцидентные вершине 1 в чёрном и белом подграфах соответственно. Тогда и оба чётны. Согласно принципу Дирихле (комбинаторика), либо , либо . Так как чётно, а нечётно, первое неравенство можно усилить, так что либо , либо .
Предположим . Тогда либо подграф, порождённый множеством , содержит белый и доказательство завершено, либо он содержит чёрный , который вместе с вершиной 1 образует чёрный . Случай рассматривается аналогично.
Случай большего количества цветов.
Лемма 2. Если , то
Доказательство. Рассмотрим граф из вершин и окрасим его рёбра цветами. Будем временно считать цвета и одним цветом. Тогда граф становится -цветным. Согласно определению числа , такой граф либо содержит для некоторого цвета , такого что либо , окрашенный общим цветом и . В первом случае доказательство завершено. Во втором случае вернём прежние цвета и заметим, что, по определению числа Рамсея, полный — вершинный граф содержит либо цвета , либо цвета , так что утверждение полностью доказано.
Из леммы 1 следует конечность чисел Рамсея для . Отсюда, на основании леммы 2, следует конечность для любого . Это доказывает теорему Рамсея.
Значения чисел Рамсея
Таблица значений
Для при имеется очень мало данных[3]. Следующая таблица значений чисел Рамсея для взята из таблицы Радзишевского[англ.][4], данные приведены по состоянию на 2020 год.
1
2
3
4
5
6
7
8
9
10
1
1
1
1
1
1
1
1
1
1
1
2
1
2
3
4
5
6
7
8
9
10
3
1
3
6
9
14
18
23
28
36
[40, 42]
4
1
4
9
18
25
[36, 41]
[49, 61]
[59, 84]
[73, 115]
[92, 149]
5
1
5
14
25
[43, 48]
[58, 87]
[80, 143]
[101, 216]
[133, 316]
[149, 442]
6
1
6
18
[36, 41]
[58, 87]
[102, 165]
[115, 298]
[134, 495]
[183, 780]
[204, 1171]
7
1
7
23
[49, 61]
[80, 143]
[115, 298]
[205, 540]
[217, 1031]
[252, 1713]
[292, 2826]
8
1
8
28
[59, 84]
[101, 216]
[134, 495]
[217, 1031]
[282, 1870]
[329, 3583]
[343, 6090]
9
1
9
36
[73, 115]
[133, 316]
[183, 780]
[252, 1713]
[329, 3583]
[565, 6588]
[581, 12677]
10
1
10
[40, 42]
[92, 149]
[149, 442]
[204, 1171]
[292, 2826]
[343, 6090]
[581, 12677]
[798, 23556]
Прим: Значения диагональных чисел Рамсея выделены жирным.
Асимптотические оценки
Из неравенства вытекает, что
В частности отсюда вытекает верхняя граница полученная Эрдёшем и Секерешем в 1935 году:
Теория Рамсея — раздел математики, изучающий условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок.
Примечания
↑F. P. Ramsey On a problem of formal logic. — «Proc. London Math. Soc.», 2-nd ser., 30 (1930), pp. 264—286