Для всякой формулы в сигнатуре, содержащей двуместные предикаты и , константы и и двуместные операции и , существует бескванторная формула , эквивалентная ей на множестве вещественных чисел .
Замечания
Эквивалентное утверждение: полуалгебраичность проекцийполуалгебраического множества: так как проекция полуалгебраического множества вдоль одной из осей добавляет в определяющую систему квантор существования, который можно элиминировать, результатом её будет полуалгебраическое множество в ; с другой стороны, полуалгебраичность всякой проекции полуалгебраического множества обеспечивает устранимость квантора существования во всякой формуле, и это является единственным нетривиальным моментом в доказательстве теоремы об элиминации кванторов.
Теорема может рассматриваться как далеко идущее обобщение теоремы Штурма[4], в связи с чем фигурирует также как обобщённая теорема Штурма. При таком взгляде, теорема Штурма формулируется[5] как наличие для любого многочлена бескванторной формулы такой, что из аксиом замкнутого вещественного поля следует эквивалентность:
;
формулировка же теоремы Зайденберга — Тарского в этом случае — переход от произвольной бескванторной формулы , ограниченной квантором существования, к бескванторной формуле :
.
Притом если классическое доказательство теоремы Штурма существенно использует техники анализа (в частности, теорему об обращении в нуль непрерывной функции, меняющей знак), то математическая логика даёт сугубо алгебраическое доказательство факта[5].
↑A. Seidenberg. New decision method for elementary algebra (англ.) // Ann. of Math., Ser. 2. — 1954. — Vol. 60. — P. 365—374.
↑A. Robinson. Review: A. Seidenberg. A new decision method for elementary algebra. Annals of mathematics, ser. 2 vol. 60 (1954), pp. 365-374. // J. Symb. Log[англ.]. — 1957. — Т. 22, № 3.…This elegantly written paper contains an alternative to Tarski’s decision method for “elementary algebra,” i.e., for sentences formulated in the lower predicate calculus with reference to a real-closed field (XIV 188). Like Tarski’s, the method described here depends on the elimination of quantifiers. In the present instance this amounts to a generalization of Sturm’s theorem as follows…