Теорема Гёделя о полноте

Теоре́ма Гёделя о полноте́ исчисле́ния предика́тов является одной из фундаментальных теорем математической логики: она устанавливает однозначную связь между логической истинностью высказывания и его выводимостью в логике первого порядка. Впервые эта теорема была доказана Куртом Гёделем в 1929.

Формула является выводимой в исчислении предикатов первого порядка тогда и только тогда, когда она общезначима (истинна в любой интерпретации при любой подстановке).

Иными словами, если — тождественно истинная формула исчисления предикатов, то доказуема в исчислении предикатов.[1]

Доказательство

Из тождественной истинности получаем, что множество не имеет модели. Из теоремы о существовании модели следует, что противоречиво, то есть - теорема исчисления предикатов. По правилу вывода получаем, что доказуема.[1]

См. также

Примечания

  1. 1 2 Ершов, 1987, с. 139.

Литература

  • Ершов Ю.Л., Палютин Е.А. Математическая логика. — М.: Наука, 1987. — 336 с.

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia