Синглетное состояние

Синглетное состояние или синглет — это система из двух частиц, суммарный спин которых равен 0. Комбинируя пару из частиц, каждая из которых обладает спином 1/2, мы можем получить три собственных состояния с суммарным спином 1 (триплет) и одно состояние с суммарным спином 0, которое называется синглет[1]. В теоретической физике термином синглет обычно обозначают одномерное представление (например, частица с нулевым спином). Также этим термином могут обозначать две и более частицы, полученные в спутанном состоянии, с общим моментом импульса равным нулю. Синглет и подобные ему термины часто встречаются в атомной и ядерной физике для описания суммарного спина некоторого числа частиц.

Спин одиночного электрона равен 1/2. Такая система имеет суммарный спин равный 1/2 и называется дублет. Практически все случаи дублетов в природе возникают из вращательной симметрии: спин 1/2 относится к фундаментальным представлениям группы Ли SU(2) — группы, которая определяет симметрию вращения в трехмерном пространстве[2]. Мы можем найти спин такой системы, используя оператор , и как результат всегда получим (или спин 1/2), поскольку разнонаправленные спины являются собственными состояниями (собственными функциями) этого оператора с тем же самым собственным значением. Аналогичным образом для системы из двух электронов мы можем посчитать спин используя оператор , где соответствует первому электрону, а второму. Однако, поскольку два электрона возможно скомбинировать четырьмя возможными способами, то в этом случае мы можем получить два возможных спина, представляющих собой два возможных собственные значения полного оператора спина — 0 и 1. Каждое из этих собственных значений соответствует набору собственных состояний или собственных функций. Говоря в терминах квантовой механики, это спиновые функции для двухэлектронной системы, полученные линейной комбинацией спиновых функций электронов α=+1/2ħ и β=—1/2ħ. Так, например, функция

— симметричная спиновая функция, тогда как функция

— антисимметрична[3].

Таким образом можно получить три симметричные функции с полным спиновым квантовым числом S=1 и одну антисимметричную функцию с S=0. Набор со спином равным 0 называется синглет, содержит одно собственное состояние (см. ниже), а спин равный 1, называемый триплет, содержит три возможных собственных состояния. В обозначениях Дирака эти собственные состояния записываются как:

Выражаясь более математическим языком, можно сказать, что тензорное произведение двух дублетных представлений может быть разложено в сумму присоединённого представления (триплет) и тривиальное представление (синглет).

Пара электронов, находящаяся в синглетном состоянии, обладает многими любопытными свойствами и играет фундаментальную роль в парадоксе Эйнштейна — Подольского — Розена и квантовой запутанности.

См. также

Примечания

  1. D. J. Griffiths, Introduction to Quantum Mechanics, Prentice Hall, Inc., 1995, pg. 165.
  2. J. J. Sakurai, Modern Quantum Mechanics, Addison Wesley, 1985.
  3. Хабердитцл, 1974, с. 209.

Литература

  • В. Хабердитцл. Строение материи и химическая связь = W. Haberditzl Bausteine der Materie und chemische Bindung / пер. с нем. канд. хим. наук В. В. Дуниной; под ред. доктора хим. наук Н. С. Зефирова. — № 3/7316. — Москва: Мир, 1974. — 296 с.