Симметричный графСимметричный граф (или транзитивный относительно дуг граф) — граф G, для любых двух пар смежных вершин которого u1—v1 и u2—v2 имеется автоморфизм:
такой, что:
Другими словами, граф симметричен, если его группа автоморфизмов действует транзитивно на упорядоченных парах смежных вершин (таким образом, на всех рёбрах, как если бы они имели ориентацию).[2] Такие графы иногда называют также 1-транзитивными относительно дуг[2] или флаг-транзитивными.[3] По определению симметричные графы без изолированных вершин должны быть также вершинно-транзитивными.[1] Поскольку по определению выше рёбра можно перевести из одного в другое, симметричные графы должны быть также рёберно-транзитивными. Однако рёберно-транзитивный граф не обязательно симметричен, поскольку a—b может быть переведён в c—d, но не в d—c. Полусимметричные графы, например, являются рёберно-транзитивными и регулярными, но не вершинно-транзитивными. Любой связный симметричный граф должен быть как вершинно-транзитивен, так и рёберно-транзитивен, и обратное верно для графов нечётной степени.[3] Однако для чётных степеней существуют связные одновременно вершинно-транзитивные и рёберно-транзитивные графы, но не симметричные.[4] Такие графы называются полутранзитивными.[5] Наименьший связный полутранзитивный граф — это граф Холта, имеющий степень 4 и 27 вершин.[1][6] Запутывает то, что некоторые авторы используют термин «симметричный граф» для графов, которые одновременно являются вершинно-транзитивными и рёберно-транзитивными. Такое определение включает полутранзитивные графы, которые исключены определением выше. Дистанционно-транзитивный граф — это граф, в котором вместо единичного расстояния смежные вершины находятся на одном и том же фиксированном расстоянии. Такие графы по определению симметричны.[1] t-дуга определяется как последовательность t+1 вершин, таких, что любые две последовательные вершины смежны, и повторение вершин может произойти не раньше, чем через 2 шага. Граф называется t-транзитивным, если группа автоморфизмов действует транзитивно на t-дуги, но не на (t+1)-дуги. Поскольку 1-дуги — это просто рёбра, любой симметричный граф степени 3 и более должен быть t-транзитивным для некоторого t, и значение t можно использовать для классификации графов. Куб является 2-транзитивным, например.[1] ПримерыСочетание условий симметрии с условием, что граф кубический (то есть все вершины имеют степень 3), порождает достаточно сильное условие, чтобы все такие графы были достаточно редки и их можно было бы перечислить. Список Фостера и его расширения дают такие списки.[7] Список Фостера был начат в 1930-х годах Рональдом Фостером во время его работы в Bell Labs,[8] и в 1988 (когда Фостеру было 92[1]) список Фостера (список всех симметричных кубических графов вплоть до 512 вершин, известных на тот момент) был опубликован в виде книги.[9] Первые тринадцать элементов списка — кубические симметричные графы, имеющие до 30 вершин[10][11] (десять из них — дистанционно-транзитивные), приведены ниже в таблице
Другие хорошо известные симметричные кубические графы — это граф Дика, граф Фостера и граф Биггса — Смита. Десять дистанционно-транзитивных графов перечислены выше. Вместе с графом Фостера и графом Биггса — Смита это единственные дистанционно-транзитивные графы. Некубические симметричные графы включают циклы (степени 2), полные графы (степени 4 и выше с 5 и более вершинами), графы гиперкубов (степени 4 и выше с 16 и более вершинами) и графы, образованные вершинами и рёбрами октаэдра, икосаэдра, кубооктаэдра и икосододекаэдра. Граф Радо даёт пример симметричного графа с бесконечным числом вершин и бесконечной степенью. СвойстваВершинная связность симметричного графа всегда равна степени d.[3] Для контраста, для общих вершинно-транзитивных графов вершинная связность ограничена снизу числом 2(d+1)/3.[2] t-транзитивный граф степени 3 и выше имеет обхват по меньшей мере 2(t-1). Однако не существует конечных t-транзитивных графов степени 3 и выше для t ≥ 8. В случае степени, в точности равной трём (кубические симметричные графы), нет графов для t ≥ 6. См. такжеПримечания
Ссылки
|
Portal di Ensiklopedia Dunia