Сжатие звука без потерьЗвук является простой волной, а оцифрованный звук — цифровое представление этой волны. Это достигается запоминанием уровня аналогового сигнала множество раз в течение одной секунды. Например, в обыкновенном CD сигнал запоминается 44100 раз за секунду. Так как CD работает со стерео, мы запоминаем сигнал для левой и правой колонки параллельно. Для каждого замера используются 16-битовые числа. Поэтому нетрудно посчитать, что одна секунда звучания занимает 2 × 2 × 44100 = 176 400 байт. Сжатие звука без потерь — совокупность преобразований, позволяющая эффективно сжимать звуковые данные с возможностью их полного восстановления. Как и любое сжатие без потерь, сжатие звуковых данных эксплуатирует какую-либо особенность данных. В данном случае это:
Преобразование координат (L, R) → (X, Y)Первым шагом в сжатии будет представление каналов аудио L и R более эффективным образом, представив их некими числами X, Y согласно следующему алгоритму: Для дробных чисел это преобразование не теряет информации и является эквивалентным оригинальному. Для целых же теряет 0,5 при конверсии в ПредикторСледующий шаг — пропустить X и Y через алгоритм, который максимально эффективно уберёт весь избыток информации в представлении X, Y. В данном случае весь процесс направлен на представление массивов X, Y минимально возможными числами, все еще сохраняя обратимость процесса. Есть множество способов сделать это. Один из них — преобразование с использованием линейной алгебры:
При этом стоит помнить, что хорошие алгоритмы организуют обработку входящих данных таким образом, чтобы уменьшить числа в массиве PX, PY.
Далее происходит перебор других значений m, поскольку большие значения могут быть более эффективны. Тогда, получив для определенного m массив данных, происходит увеличение или уменьшение m в зависимости от того, была ли последняя попытка в алгоритме удачной. Используя разные уравнения и используя множество проходов для разных свободных коэффициентов, можно добиться вполне ощутимого сжатия данных. Приведем пример нескольких уравнений, как это следует из технической литературы
Кодирование. Алгоритм РайсаИдея сжатия аудио заключается в представлении чисел, соответствующих потоку минимально возможным образом, убрав предварительно любую корреляцию данных. После этого можно записывать поток закодированных данных на диск. Одним из самых эффективных способов является кодирование Райса. Меньшие числа предпочтительней тем, что их представление в бинарном представлении короче. Например, необходимо закодировать следующий ряд:
Или тот же ряд в бинарном виде
Теперь если требуется представить этот в виде строки, где для каждого числа зарезервировано 32 бита (диапазон всех возможных значений), то это будет неэффективно, поскольку понадобится 128 бит. Однако существует более эффективный метод. Наилучшим решением было бы просто записать бинарные числа 1010, 1110, 1111, 101110 без запятых, получив ряд вида 101011101111101110. Проблема в том, что после нет возможности узнать границы каждого числа. В качестве решения подобной задачи, как правило, используется алгоритм Райса.
На каком-то этапе кодирования данные представлены в виде числа n. Закодированное, оно добавляется справа к строке уже закодированных чисел таким образом, чтобы был возможен обратный процесс.
Так как в машинном языке существует сверхбыстрая команда ротации числа, соответствующая делению числа на степени двойки, достаточно использовать k=log n/log 2, округленное до наименьшего целого числа. Таким образом, в алгоритме гарантированно выполняются условия для k. Исходя из формулы, необходимо определить число и остаток : . Например,
Далее строится кодированное число по следующей схеме. Первыми идут нули, количеством в q штук [00]. Затем справа к нулям добавляется маркировочный бит [1], чтобы знать когда кончаются нули. А за ними дописывается остаток r [1110], длиной в k бит.
Теперь, с учетом определенности k, которым кодировалось число, можно с легкостью его расшифровать:
Следующее число начинается сразу же со следующего бита. Если данные кодируются с помощью слишком большого числа k, например k=32, тогда способ превращается в описанный в начале раздела метод, когда каждому числу соответствует 32 бита, только оно предваряется бесполезным маркировочным битом. В случае малого k количество нулей экспоненциально возрастает — для k=0. Для представления числа 46 понадобится 46 нулей и 1 маркировочный бит. Оптимальный вариант, учитывая, что в ряду калибровочные изменения минимальны, — это кодировать среднестатистическим значением для k, например для кодирования сотого числа k высчитывается как среднестатистический размер чисел в массиве под индексами 0…99. Например, для 16-ти разрядного представления отсчетов число 46 будет представлено следующим двоичным кодом: 0000000000101110. После перекодировки это же число будет содержать всего лишь 7 разрядов: 0011110. Оптимальное k может быть вычислено и экспериментальным способом: например, любое k между 16…128 нормально работает. В любом случае, если известен примерный диапазон закодированных значений, то оптимальное значение для k = log n / log 2. См. также
|
Portal di Ensiklopedia Dunia