Прецессия ТомасаПреце́ссия То́маса — кинематический эффект специальной теории относительности, проявляющийся в изменении ориентации векторов, связанных с неинерциальной системой отсчёта, относительно лабораторной системы отсчёта[1]. Использован Люэлином Томасом в 1926 году для объяснения спин-орбитального взаимодействия электрона в атоме[2]. Если на вращающийся гироскоп действует сила, изменяющая его скорость, но отсутствует момент силы, то в классической механике такой гироскоп при движении будет сохранять ориентацию собственного момента вращения (спина). В теории относительности это уже не так, и при изменении скорости гироскопа будет происходить и изменение вектора его спина. Математически этот эффект связан с групповыми свойствами преобразований Лоренца — их некоммутативностью. История вопросаЭффект Томаса был известен французскому математику Э. Борелю в 1913 году[3][4]. Борель отметил некоммутативность неколлинеарных преобразований Лоренца и оценил в низшем порядке по 1/с2 угол поворота координатных осей движущейся с ускорением системы отсчёта. В том же году два математика из Гёттенгена, Фоппл и Даниэл[5], получили точное релятивистское выражение для угла поворота при движении тела по окружности. Примерно в то же время прецессия координатных осей обсуждалась Зильберштейном[6]. В 1922 году Э. Ферми рассмотрел параллельный транспорт систем отсчета в общей теории относительности[7]. В пространстве Минковского перенос Ферми приводит к прецессии Томаса. Наконец, в 1926 году в журнале Nature была опубликована заметка Томаса[8], которая объяснила отклонение на фактор ½ данных измерений от предсказаний теории тонкой структуры атома водорода, связывавшей спин-орбитальное расщепление с прецессией Лармора. Томас ограничился вычислением в низшем порядке по 1/с2. Работа привлекла большое внимание и эффект прецессии координатных осей при ускоренном движении стал называться «прецессией Томаса». Единственным источником, который был известен Томасу, являлась работа Де Ситтера о прецессии Луны, опубликованная в сборнике Артура Эддингтона[9]. Описание эффектаПусть неинерциальная система отсчёта в момент времени t имеет относительно лабораторной (инерциальной) системы отсчёта K скорость v, а в момент времени t+dt — скорость v+dv. Свяжем в эти моменты времени с неинерциальной системой две сопутствующие ей инерциальные системы K' и K", движущиеся со скоростями и v+dv. Обозначим через матрицу преобразования Лоренца. Пусть скорость системы K" относительно K' равна dv'. Переход от лабораторной системы отсчёта к системе K', а затем от системы K' к системе K" описывается произведением лоренцевских матриц: где — матрица 3-мерного вращения декартовых осей вокруг единичного вектора на угол и последовательность матриц обратна последовательности выполняемых преобразований. Параметры этого вращения равны: где dv и dv' связаны стандартным релятивистским законом сложения скоростей, а — лоренцевский фактор и — скорость света. Таким образом, композиция чистых преобразований Лоренца в общем случае равна не чистому преобразованию Лоренца (бусту), а композиции буста и поворота. Связано это с тем, что группа Лоренца описывает повороты в 4-мерном пространстве-времени. В зависимости от того, в какой плоскости происходит вращение, это может быть буст, 3-мерное вращение или их комбинация. Вращение, возникающее в результате композиции лоренцевских бустов, называется вигнеровским вращением. Пусть с неинерциальной системой отсчёта связан некоторый вектор S. Если при изменении скорости системы все векторы переносятся параллельным образом с точки зрения сопутствующих систем отсчёта, то в результате вигнеровского вращения происходит поворот этих векторов, который можно записать в форме следующего уравнения Томаса: где a=dv/dt — ускорение относительно лабораторной системы отсчёта. В случае равномерного движения по окружности с угловой скоростью , скорость и ускорение перпендикулярны друг другу. В силу уравнения Томаса происходит поворот вектора S с постоянной угловой скоростью Это уравнение было получено впервые Л. Фёпплем и П. Даниэлом[5]. В случае гироскопа данное вращение вектора углового момента называется прецессией Томаса. В атоме водорода прецессия спина электрона уменьшает спин-орбитальное взаимодействие в два раза. В разложении по степеням 1/c2 уравнения Дирака для атома водорода «половинка Томаса» появляется автоматически. Разнообразные физические и геометрические аспекты прецессии Томаса обсуждаются в монографиях [1] [2] и статьях методического характера [10] [11] [12]. См. также
Примечания
Литература
|
Portal di Ensiklopedia Dunia