Последовательность Морса — ТуэПоследовательность Морса — Туэ — бесконечная последовательность нулей и единиц (битов), впервые предложенная в 1906 году норвежским математиком Акселем Туэ в качестве примера апериодической рекурсивно вычислимой строки символов[уточнить]. Существует два варианта последовательности, получающиеся друг из друга инверсией битов:
Последовательность Морса — Туэ является простейшим примером фрактала и находит своё применение в алгоритмах фрактального сжатия изображений. ОпределенияПоследовательность можно определить многими разными эквивалентными способами:
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
Шаг 1: 1 Шаг 2: 10 Шаг 3: 1001 Шаг 4: 10010110 Шаг 5: 1001011001101001 ...
ИсторияПоследовательность была открыта в 1851 году Пруэ (фр. E. Prouhet), который нашёл ей применение в теории чисел, однако не описал исключительные свойства последовательности. И только в 1906 году Аксель Туэ при изучении комбинаторики открыл её заново. Публикация работы Туэ в Германии прошла бесследно, и последовательность вновь открывает Марсон Морс в 1921, применив её в дифференциальной геометрии. Последовательность открывалась независимо много раз: например гроссмейстер Макс Эйве открыл её применение в шахматах, показав, как играть бесконечно, не нарушая правил ничьей. СвойстваСимметрииКак и любой фрактал, последовательность Морса — Туэ обладает рядом симметрий. Так, последовательность остаётся сама собой:
10 01 01 10 01 10 10 01 01 10 10 01 10 01 01 10... 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1...
1001 0110 0110 1001 0110 1001 1001 0110... 1 0 0 1 0 1 1 0... Другие свойства
где — элементы последовательности Морса-Туэ. Это число трансцендентно (доказано K. Mahler в 1929 году). Вариации и обобщенияОбобщение на произвольный алфавитИмея произвольный алфавит из n символов, можно составить ровно n разных циклических перестановок этого алфавита. Затем, заменяя каждую «букву» алфавита на соответствующую перестановку, можно получить последовательность Морса — Туэ. Так например из трёх символов «1», «2», «3» можно составить три циклических перестановки: «123», «231», «312»: 1 1 2 3 1 2 3 2 3 1 3 1 2 1 2 3 2 3 1 3 1 2 2 3 1 3 1 2 1 2 3 3 1 2 1 2 3 2 3 1... Многомерное обобщениеМногомерная последовательность Морса — Туэ определяется подобным образом. Так например двумерная последовательность (матрица) является пределом последовательности, каждый следующий член которой получается из предыдущего при помощи преобразования
Также двумерную последовательность Морса-Туэ можно представить как совокупность одномерных. Ссылки
|
Portal di Ensiklopedia Dunia