Порядок ШарковскогоПорядок Шарковского — упорядочение натуральных чисел, связанное с исследованием периодических точек динамических систем на отрезке или на вещественной прямой. ИсторияИсследуя унимодальные отображения, в частности, квадратичное отображение, А. Н. Шарковский в 1964 году обнаружил, что в области «хаоса» на соответствующей бифуркационной диаграмме имеются так называемые «окна периодичности» — узкие интервалы значений параметра , в которых существуют периодические движения; им и соответствуют переходы в порядке Шарковского. В частности, двигаясь в нижней строке против направления стрелок от 1, мы проходим каскад удвоений периодов Фейгенбаума. ФормулировкаДля целых положительных чисел и мы будем писать , если динамическая система на отрезке или прямой, имеющая точку наименьшего периода a, имеет и точку наименьшего периода b. Теорема Шарковского утверждает, что таким образом задаётся полный порядок на множестве натуральных чисел, устроенный следующим образом:
В верхней строчке выписаны в порядке возрастания все нечётные числа, кроме 1, во второй строке — произведения нечётных чисел (кроме 1) на 2, в третьей — произведения нечётных чисел на 2², в k-й строке сверху — произведения нечётных чисел на . Наконец, в последней (нижней) строке представлены чистые степени двойки. Период 3 влечёт хаосВ частности, число 3 — наибольшее в смысле этого упорядочения, поэтому наличие точки периода 3 влечёт за собой наличие точки с любым периодом. Часто этот частный случай сокращённо формулируют как «период 3 влечёт хаос». Случай периодической точки периода 3 — наиболее содержательный. В случае наличия точки периода 3 можно утверждать «хаотичность» системы и в других смыслах; например, топологическая энтропия системы будет положительна.[источник не указан 1836 дней] Набросок доказательстваВ этом случае найдутся различные точки , для которых Можно без ограничения общности считать, что . Тогда для отрезков и выполнено Отсюда несложно вывести, что для любого конечного слова , составленного из нулей и единиц и не содержащего двух нулей подряд, найдётся такой интервал , что Отсюда уже несложно построить периодическую точку любого периода : достаточно взять в алфавите из нулей и единиц любое периодическое слово наименьшего периода без двух нулей подряд. Для соответствующего ему отрезка выполнено поэтому в этом отрезке найдётся периодическая точка соответствующего периода. Наконец, в терминах символической динамики (для разбиения , , дополнение) её судьба это последовательность , у которой является наименьшим периодом, поэтому является наименьшим периодом и для построенной точки. Литература
Ссылки
|