Если — система Коксетера с порождающими элементами , то (сильный, слабый левый, слабый правый) порядок Брюа — это частичный порядок на группе , определяемый для следующим образом[5]:
в (сильном) порядке Брюа, если некоторая подстрока некоторого (любого) приведённого слова для является приведённым словом для [6];
, то есть меньше или равно в слабом левом порядке Брюа, если некоторый постфикс некоторого приведённого слова для является приведённым словом для ;
в слабом правом порядке Брюа, если некоторый префикс некоторого приведённого слова для является приведённым словом для .
Граф Брюа
Граф Брюа — это ориентированный граф, связанный с сильным порядком Брюа. Множество вершин графа Брюа состоит из элементов группы Коксетера, а ориентированное ребро между вершинами и проводится тогда и только тогда, когда и существует такое отражение , что . Граф Брюа можно воспринимать как ориентированный граф с помеченными рёбрами, где метки соответствуют отражениям. Аналогичным образом можно определить граф Брюа с умножением на отражение справа. В таком случае новый граф окажется изоморфен исходному, но метки на его рёбрах будут расставлены иначе.
Сильный порядок Брюа на симметрической группе обладает функцией Мёбиуса, которая определяется равенством , а значит соответствующее частично упорядоченное множество является эйлеровым.
↑Приведённое слово для элемента — это минимальное по длине представление элемента в виде произведения элементов из , а длина элемента — это число элементов в приведённом слове
↑Здесь «подстрока» не обязательно означает «последовательная подстрока»