В классической механикевектором Лапласа — Рунге — Ленца называется вектор, в основном используемый для описания формы и ориентации орбиты, по которой одно небесное тело обращается вокруг другого (например, орбиты, по которой планета вращается вокруг звезды). В случае с двумя телами, взаимодействие которых описывается законом всемирного тяготения Ньютона, вектор Лапласа — Рунге — Ленца представляет собой интеграл движения, то есть его направление и величина являются постоянными независимо от того, в какой точке орбиты они вычисляются; говорят, что вектор Лапласа — Рунге — Ленца сохраняется при гравитационном взаимодействии двух тел. Это утверждение можно обобщить для любой задачи с двумя телами, взаимодействующими посредством центральной силы, которая изменяется обратно пропорционально квадрату расстояния между ними. Такая задача называется Кеплеровой задачей.
При пропускании инфракрасного излучения через вещество происходит возбуждение колебательных движений молекул или их отдельных фрагментов. При этом наблюдается ослабление интенсивности света, прошедшего через образец. Однако поглощение происходит не во всём спектре падающего излучения, а лишь при тех длинах волн, энергия которых соответствует энергиям возбуждения колебаний в изучаемых молекулах. Следовательно, длины волн (или частоты), при которых наблюдается максимальное поглощение ИК-излучения, могут свидетельствовать о наличии в молекулах образца тех или иных функциональных групп и других фрагментов, что широко используется в различных областях химии для установления структуры соединений.
Точечный транзистор, выпускавшийся серийно около десяти лет, оказался тупиковой ветвью развития электроники — ему на смену пришли германиевые плоскостные транзисторы. Теорию p-n-перехода и плоскостного транзистора создал в 1948—1950 годах Уильям Шокли. Первый плоскостной транзистор был изготовлен 12 апреля 1950 года методом выращивания из расплава. За ним последовали сплавной транзистор, «электрохимический» транзистор и диффузионный меза-транзистор.
В 1954 году Texas Instruments выпустила первый кремниевый транзистор. Открытие процесса мокрого окисления кремния сделало возможным выпуск в 1958 году первых кремниевых меза-транзисторов, а в марте 1959 года Жан Эрни[англ.] создал первый кремниевый планарный транзистор. Кремний вытеснил германий, а планарный процесс стал основной технологией производства транзисторов и сделал возможным создание монолитных интегральных схем.
В 1956 году Шокли набрал команду талантливых молодых специалистов для разработки и запуска в производство новых полупроводниковых приборов. Нобелевский лауреат по физике, опытный исследователь и преподаватель не справился с управлением предприятием. Он выбрал, как оказалось позже, бесперспективную стратегию и своими руками создал нетерпимые условия для сотрудников. В марте 1957 года несогласные с диктатом Шокли начали переговоры о создании новой, своей, компании, а в августе заключили соглашение с Шерманом Фэйрчайлдом[англ.]. Формальный разрыв отношений состоялся 18 сентября 1957 года. Основанная «восьмёркой» Fairchild Semiconductor вскоре выросла в крупнейшего производителя полупроводников, технологического лидера отрасли. Fairchild 1960-х стала важнейшим бизнес-инкубаторомКремниевой долины, прямо или косвенно причастным к созданию десятков корпораций — от AMD до Zilog.
Звезда — массивное самосветящееся небесное тело, состоящее из газа или плазмы, в котором происходят, происходили или будут происходить термоядерные реакции. Ближайшей к Земле звездой является Солнце, а звёзды на ночном небе выглядят как точки различной яркости, сохраняющие своё взаимное расположение. Звёзды различаются структурой и химическим составом, а такие параметры, как радиус, масса и светимость, у разных звёзд могут отличаться на порядки.
Самая распространённая схема классификации звёзд — по спектральным классам — основывается на их температуре и светимости. Кроме того, среди звёзд выделяют переменные звёзды, которые меняют свой видимый блеск по различным причинам, с собственной системой классификации. Звёзды часто образуют гравитационно-связанные системы: двойные или кратные системы, звёздные скопления и галактики. Со временем звёзды меняют свои характеристики, так как в их недрах проходит термоядерный синтез, в результате которого меняется химический состав и масса — это явление называется эволюцией звёзд, и в зависимости от начальной массы звезды она может проходить совершенно по-разному.
Вид звёздного неба привлекал людей с древности, с видом созвездий или отдельных светил на нём были связаны мифы и легенды разных народов, до сих пор он находит отражение в культуре. Ещё со времён первых цивилизаций астрономы составляли каталоги звёздного неба, а в XXI веке существует множество современных каталогов, содержащих различную информацию для сотен миллионов звёзд.
Показа́тель (и́ндекс) преломле́ния — безразмерная физическая величина, характеризующая отличие фазовых скоростей света в двух средах. Для прозрачных изотропных сред, таких как газы, большинство жидкостей, аморфные вещества (например, стекло), употребляют термин абсолютный показатель преломления, который обозначают латинской буквой и определяют как отношение скорости света в вакууме к фазовой скорости света в данной среде: . В случае двух произвольных сред говорят об относительном показателе преломления одной среды по отношению к другой. Если не указано иное, то обычно имеется в виду абсолютный показатель преломления. Абсолютный показатель преломления часто превышает единицу, поскольку скорость распространения света в любой среде меньше скорости света в вакууме. Однако фазовая скорость света при некоторых условиях может превышать скорость его распространения, и тогда показатель преломления может принимать значения меньше единицы.
Ядерные реакции в звёздах являются их основным источником энергии. Они обеспечивают большое энерговыделение на единицу массы, что позволяет звёздам поддерживать высокую светимость в течение длительного времени. В этих реакциях образуется бо́льшая часть химических элементов, существующих в природе: происходит нуклеосинтез. Протекание ядерных реакций возможно из-за высокой температуры в недрах звёзд, их темп зависит от температуры и плотности.
Важнейшие ядерные реакции в звёздах — реакции ядерного горения водорода, в результате которых четыре протона превращаются в ядро гелия-4. Во время стадии главной последовательности, которая занимает около 90 % срока жизни звезды, в её ядре идут именно эти реакции. Сгорание водорода происходит двумя способами: в протон-протонном цикле и в CNO-цикле.
Последующие реакции могут протекать лишь в достаточно массивных звёздах. За счёт них звёзды получают существенно меньше энергии, чем за счёт сгорания водорода, но в них формируется большинство остальных химических элементов. Первая из этих реакций — ядерное горение гелия, в котором синтезируются углерод и кислород. После сгорания гелия начинается ядерное горение углерода, неона, кислорода и, наконец, кремния. В этих реакциях синтезируются различные элементы вплоть до железного пика, самый тяжёлый из которых — цинк. Синтез более тяжёлых химических элементов энергетически невыгоден и не происходит при термодинамическом равновесии, однако в некоторых условиях, например при вспышках сверхновых, возможен и он. Тяжёлые элементы формируются в ходе s-процесса и r-процесса, при которых ядра захватывают нейтроны, а также p-процесса, при котором ядро может, например, захватывать протоны.
Вопрос об источнике энергии звёзд возник после того, как был сформулирован закон сохранения энергии, — в 40-х годах XIX века. Гипотезу о том, что энергия выделяется при превращении водорода в гелий, выдвинул в 1920 году Артур Эддингтон, после чего были открыты цепочки реакций для этого процесса. В 1941 году Мартин Шварцшильд рассчитал модель Солнца с термоядерным источником энергии и смог теоретически предсказать некоторые наблюдаемые свойства Солнца, подтвердив теорию термоядерного синтеза в недрах звёзд. Позже была открыта возможность протекания других реакций в недрах звёзд, а в 1957 году вышла статья B²FH, в которой было с хорошей точностью объяснено происхождение большинства химических элементов.
Портал был создан физиком Полом Гинспаргом в 1991 году и был назван xxx.lanl.gov, где LANL являлось сокращением от Лос-Аламосской национальной лаборатории, в которой исследователь в то время работал. В 1998 году сайт был переименован в arXiv.org. Когда в 2001-м Гинспарг перешёл работать на факультет физики Корнеллского университета и перевёз серверы с собой, местная университетская библиотека?! взяла на себя обязательства по администрированию и финансированию arXiv.
Зако́н Куло́на (зако́н обра́тных квадра́тов Куло́на) — экспериментальный физическийзакон, являющийся одним из основных законов электростатики и описывающий величину действующей между двумя электрически заряженными точечными частицами силы в состоянии покоя в вакууме. Эту электрическую силу условно называют электростатической или кулоновской силой. Хотя закон был известен и раньше, впервые он был проверен и опубликован в 1785 году французским физиком Шарлем Кулоном, по имени которого и был назван. Закон Кулона послужил началу развития теории электромагнетизма, поскольку позволял осмысленно обсуждать количество электрического заряда в объекте изучения.
В современной формулировке закон Кулона гласит: «Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и и обратно пропорциональна квадрату расстояния между ними . Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.»
Хотя закон Кулона похож на закон всемирного тяготенияНьютона, но гравитационные силы всегда заставляют объекты притягиваться, а электростатические силы могут заставлять заряды как притягиваться, так и отталкиваться. Кроме того, гравитационные силы намного слабее электростатических. Закон Кулона можно использовать для вывода закона Гаусса и наоборот (в случае покоящегося точечного заряда эти два закона выражают одну и ту же физическую идею по-разному). Закон тщательно проверялся экспериментально, и наблюдения подтвердили его применимость в масштабе от 108 м до 10−16 м.
Франций — самый тяжёлый щелочной металл, по свойствам больше всего напоминающий цезий. До его открытия предполагалось, что франций является самым электроположительным и наиболее химически активным из всех металлов, однако, согласно современным данным, таковым следует считать, по-видимому, цезий. Из-за редкости и высокой радиоактивности франций почти нигде не применяется.
Франций — самый редкий природный элемент после астата; в природе встречается в ничтожно малых количествах: так, по некоторым данным на 1 атом Fr приходится 3·1018 атомов природного урана, а общее содержание франция в земной коре по разным данным от 20—30 до 340—500 г. Все изотопы чрезвычайно радиоактивны. Обнаружены их распады в астат (путём альфа-распада), радон (путём позитронного распада и конкурирующего с ним электронного захвата) и радий (путём бета-минус-распада); кроме того, известен чрезвычайно редкий кластерный распад франция-221 в таллий-207 с испусканием ядра 14C. Наиболее стабильный изотоп 223Fr имеет период полураспада 22 минуты. Металлический образец франция никогда не наблюдался, существуют лишь фотографии образцов, содержащих до 200 000 атомов. Это последний элемент, впервые обнаруженный в природе, а не путём ядерного синтеза.
Многие физические свойства франция могут быть определены только путём расчёта, исходя из данных о стабильных щелочных металлах. Расчётная плотность франция от 1,87 до 2,9 г/см3. Температура плавления франция, по некоторым данным, от 8 до 30 °C, но этот сильнорадиоактивный металл выделяет столько тепла, что даже в случае получения нескольких миллиграммов он немедленно закипит и превратится в светящийся дым.
Попытки открыть элемент долгое время оказывались неудачными. Первоначально его пытались найти там, где содержится много щелочных элементов — в морской воде и в золе от сжигания растений. Только после изучения радиоактивных рядов природных изотопов тория-232, урана-235 и 238, было предположено, что элемент 87 существует в виде промежуточных членов этих рядов. Открыт в 1939 году, через 69 лет после предсказания Менделеева, как продукт распада актиния. В настоящее время источником получения этого элемента являются препараты актиния и ядерные реакции, например, облучение золотой мишени ионами кислорода, платиновой мишени — ионами углерода, урановой или ториевой — протонами.