Паровой взрывПаровой взрыв (англ. Vapor Explosion) — резкое (быстрое) за время 1 мс образование большого количества пара, сопровождающееся местным повышением давления, вследствие перехода тепловой энергии (затрачиваемой на испарение жидкости и расширение пара) в механическую[1]. Условия возникновения парового взрываДля возникновения и развития крупномасштабного парового взрыва необходим ряд условий:
Стадии парового взрываВ явлении парового взрыва выделяют четыре стадии — фазы:
Паровой взрыв чистых жидкостейЖидкости высокой степени чистоты легко входят в перегретое состояние. Связано это с тем, что в таких средах присутствует весьма малое количество зародышей паровых пузырей. Однако если перегретая чистая жидкость контактирует с ячеистой структурой или внутри неё возникают турбулентные течения, то в течение сравнительно малого промежутка времени количество зародышей многократно увеличивается и в них начинается процесс парообразования. Возникающие при этом локальные течения ещё больше турбулизируют жидкость, что приводит к росту интенсивности парообразования и процесс ускоряется лавинообразно до тех пор, пока вся жидкость не превратится в пар. По этой причине нагрев чистых жидкостей до температуры кипения чрезвычайно опасен. На большинстве бытовых водонагревательных приборов есть соответствующие предупреждения о недопустимости использования дистиллированной воды. Паровой взрыв на АЭСВ условиях тяжелой аварии на АЭС паровой взрыв может происходить при контакте расплавленных материалов активной зоны — кориума — с теплоносителем. Механизмы фрагментации расплава связаны с локальными тепловыми и гидродинамическими явлениями на границе расплава и теплоносителя. Периодический рост и схлопывание паровых пузырей, разница в скоростях капли и расплава приводят к силам, вызывающим дробление капель. Образующиеся ударные волны при взаимодействии с каплями расплава также приводят к дроблению капель. Силовые элементы главного циркуляционного контура АЭС работают в тяжелых условиях: высокий уровень температур и давлений; значительные термические напряжения, обусловленные большими тепловыми нагрузками и градиентами температуры; высокие скорости теплоносителя, способствующие появлению вибраций; ионизирующее излучение. Поэтому во время эксплуатации серьёзное внимание обращается на поддержание заданного безопасного теплогидравлического режима. На АЭС имеются надежные системы контроля всех основных режимных параметров и состояния оборудования. Тем не менее, даже маловероятные отказы отдельных элементов оборудования или отказы в системах контроля и регулирования, или просто случайное сочетание неблагоприятных отклонений режимных параметров от нормальных условий эксплуатации могут привести к аварийным ситуациям[2]. Безопасность АЭС базируется на комплексе мероприятий, направленных на профилактику причин аварийных ситуаций и совершенствования средств защиты. Один из главных вопросов оценки парового взрыва — знание того, как быстро отводится тепло от расплавленной частицы. Исследованию этого вопроса посвящён комплекс научных исследований, в частности механизмам фрагментации теплоносителя[3][4], эволюции паровых образований[5]. См. такжеПримечания
|
Portal di Ensiklopedia Dunia