Нормальная форма СмитаНормальная форма Смита — это диагональная (не обязательно квадратная) матрица над областью главных идеалов, каждый следующий диагональный элемент которой делится на предыдущий. Любую матрицу над областью главных идеалов можно привести к нормальной форме Смита путём умножения слева и справа на обратимые матрицы[1]. ФормулировкаДля любой матрицы размера над областью главных идеалов существуют такие обратимые над матрицы и , что , где делится на . Здесь обозначает матрицу размера с указанными диагональными элементами и нулями на остальных позициях. ПримененияИз теоремы о нормальной форме Смита следует известная теорема о структуре конечнопорожденных модулей над областями главных идеалов. В частности, если — кольцо целых чисел, то из нормальной формы Смита получается теорема о строении конечнопорожденных абелевых групп, а если — кольцо многочленов над алгебраически замкнутым полем , то из нее можно вывести теорему о жордановой форме линейного оператора. См. такжеПримечания
Литература
|
Portal di Ensiklopedia Dunia