Модулярная решёткаМодулярная решётка (дедекиндова решётка) — решётка, в которой каждая пара элементов модулярна, то есть справедлив закон модулярности — квазитождество:
Важнейший пример модулярной решётки — решётка подпространств векторного пространства; также модулярны решётка нормальных подгрупп группы, решётка идеалов кольца. Любая дистрибутивная решётка является модулярной, обратное неверно: ромб (диамант) — пример модулярной решётки, которая не является дистрибутивной. Наименьшая немодулярная решётка — пятиэлементный пентагон , любая немодулярная решётка содержит его в качестве подрешётки. В модулярных решётках справедлива теорема об изоморфизмах интервалов: для любых двух элементов модулярной решётки и интервалы и изоморфны, прямое отображение: , обратное — . Немодулярная решётка может содержать элементы, удовлетворяющие закону модулярности. Элемент называется левомодулярным, если для любого элемента пара модулярна. Элемент называется правомодулярным, если для любого элемента пара модулярна. Закон модулярности и некоторые его следствия впервые установлены Рихардом Дедекиндом в 1894 году. Литература
|
Portal di Ensiklopedia Dunia