Модельный рискМодельный риск (англ. Model risk) — риск возникновения убытков в результате использования недостаточно точных моделей для принятия решений, первоначально и часто в контексте оценки ценных бумаг[1]. В последнее время понятие модельного риска начинает использоваться и в других видах деятельности, таких как присвоение потребительских кредитных баллов, прогнозирование вероятности мошеннических операций с кредитными картами в реальном времени и вычисление вероятности того, что пассажир воздушного рейса является террористом. Причины реализацииУбытки в результате реализации модельного риска могут быть вызваны ошибками в принятых допущениях, банальной небрежностью или намеренной недооценкой риска или переоценкой прибыли. Ниже перечислены причины реализации модельного риска. Допущение постоянной волатильностиПринятие волатильности как постоянной величины является наиболее частой ошибкой при построении моделей. Например, волатильность индекса S&P 500 в начале июля 2007 года составляла около 15 %, но к концу месяца превысила 30 %. Также в сентябре 2008 года значение индекса волатильности VIX на бирже CBOE составляло около 30 %, а всего через две недели — после банкротства Lehman Brothers — выросло до 80 %. Наиболее точными являются модели оценки опционов, учитывающие непостоянный характер волатильности. Однако применение таких моделей является значительно более ресурсозатратным с точки зрения вычислительных мощностей. Допущение нормального распределения доходностейЗачастую трейдеры принимают распределение доходностей нормальным, тогда как в реальности в них присутствуют «толстые хвосты». Недооценка количества риск-факторовДля простых финансовых продуктов могут быть применены относительно простые однофакторные модели. Сложные деривативы, например, со встроенной опциональностью, требуют применения сложных моделей с несколькими факторами. Допущение совершенного рынка капиталаМногие рынки OTC даже в финансово развитых странах не являются совершенными: деривативы на них не торгуются публично, тем самым их хеджирование затруднено. Реальные рынки связаны с такими ограничениями, как транзакционные издержки и невозможность непрерывного трейдинга (из-за выходных, праздников и прочих причин). Ещё более далеки от совершенных рынки в развивающихся странах. Допущение ликвидных рынковМодельный риск может быть реализован, если не учтено движение рыночной цены актива при исполнении особо крупной сделки (так называемая эндогенная ликвидность). Особенно риск ликвидности возрастает в кризисные периоды. Некорректное применение моделейДаже если модель корректна, её некорректное применение может привести к реализации модельного риска. Одним из примеров является недостаточное количество выполненных симуляций Монте-Карло или слишком большие временные шаги. Для расчёта сложных деривативов необходимо использовать актуальные значения входных данных: котировок, волатильностей и корреляций. Обновление рыночных данных может выполняться либо на периодической основе, либо при существенных движениях рынка. Как было указано выше, учитывание в распределении «толстых хвостов» также имеет существенное значение. К наиболее частым ошибкам при использовании моделей относятся:
Меры по снижению риска (митигация)Модельный риск может быть снижен благодаря инвестированию в дополнительную разработку моделей, либо внедрению процесса независимой проверки выбора и построения моделей. Последняя состоит из 6 этапов проверки:
Примеры реализации в финансовой сфере
См. такжеПримечания
Литература
Дополнительная литература
|