Метод Эйлера — ПаркераМетод Эйлера — Паркера — метод построения ортогонального квадрата для заданного латинского квадрата порядка . Предложен Паркером в 1959 году[1]. МетодМетод поиска состоит из трех шагов:
Построение трансверсалей и выбор непересекающихся подмножеств из них возможно реализовать с использованием метода полного перебора, однако более эффективной практической реализацией является полиномиальное сведение данных задач к задаче о точном покрытии[англ.], для решения которой эффективным является применение алгоритма танцующих связей[англ.] (DLX). При поиске ортогональных диагональных латинских квадратов вместо трансверсалей общего вида используются диагональные трансверсали, в состав которых входит по одному элементу с главной и побочной диагонали квадрата. Формирование ортогонального квадрата из найденного подмножества из непересекающихся трансверсалей производится путем заполнения каждой -й трансверсали значением в формируемом ортогональном квадрате. Историческая справкаЛеонардом Эйлером в ходе решения задачи о 36 офицерах была выдвинута гипотеза о том, что пары ортогональных латинских квадратов не существуют для всех размерностей . Верность гипотезы для размерности была подтверждена Томасом Клаузеном в 1842 году. Поиск контрпримера к гипотезе Эйлера был осуществлен в 1957 году Пейджем и Томпкинсом с использованием метода полного перебора на компьютере SWAC, однако он не увенчался успехом ввиду необходимости огромных вычислительных затрат. В 1959 году Паркером[1] было предложено построение ортогонального квадрата с использованием трансверсалей и компьютера UNIVAC и был найден контрпример к гипотезе Эйлера для порядка . Аналогичный результат, опровергающий гипотезу Эйлера, был опубликован том же году в работе Бозе и Шринкхенде[2]. В 1992 году Брауном[3] описан диагональный латинский квадрат порядка 10, имеющий одновременно 4 ортогональных диагональных латинских квадрата, 3 из которых приведены в статье, а 4-й был найден О. Заикиным с использованием подхода на базе SAT. В настоящее время известны диагональные латинские квадраты порядка 10, имеющие 1, 2, 3, 4, 5, 6, 7, 8 и 10 нормализованных ортогональных диагональных латинских квадратов (последовательность A287695 в OEIS). Они формируют 42 комбинаторных структуры (графа из диагональных латинских квадратов на множестве бинарного отношения ортогональности)[4]. Большая часть из них была найдена в проекте добровольных распределенных вычислений Gerasim@Home начиная с 2017 г. Вопросы о существовании диагональных латинских квадратов порядка 10 с большим числом нормализованных ортогональных латинских квадратов и о существовании клики мощностью более двух из попарно ортогональных латинских квадратов порядка 10 в настоящее время являются открытыми. См. такжеПримечания
Литература
|
Portal di Ensiklopedia Dunia