Лазерное ускорение электронов

Ла́зерное ускоре́ние электро́нов — процесс ускорения электронного пучка с помощью сверхсильного лазерного излучения. Возможно как ускорение непосредственно электромагнитным излучением в вакууме или в специальных диэлектрических структурах[1], так и опосредованное ускорение в ленгмюровской волне, возбуждаемой лазерным импульсом, распространяющимся в плазме низкой плотности. Данным методом экспериментально получены пучки электронов с энергиями, превышающими 10 ГэВ.

Прямое ускорение лазерным полем

Прямое ускорение лазерным полем малоэффективно, поскольку в строго одномерной задаче электрон, попадающий в поле лазерного импульса, после выхода из него имеет ту же энергию, что и в начале, то есть требуется проводить ускорение в сильносфокусированных полях, в которых существенна продольная составляющая электрического поля, но в таких полях фазовая скорость волны вдоль оси распространения больше скорости света, поэтому электроны быстро отстают от ускоряющего поля. Чтобы компенсировать последний эффект предлагалось проводить ускорение в газе, где относительная диэлектрическая проницаемость выше единицы, и фазовая скорость уменьшается. Однако в этом случае существенным ограничением является то, что уже при интенсивностях излучения порядка 1014 Вт/см² газ ионизируется, образуя плазму, что приводит к дефокусировке лазерного пучка. Экспериментально таким методом была продемонстрирована модуляция в 3,7 МэВ пучка электронов, имевших энергию 40 МэВ[2].

Ускорение в плазменной волне

При распространении достаточно интенсивного лазерного импульса в газе происходит его ионизация с образованием неравновесной плазмы, в которой за счёт пондеромоторного воздействия лазерного излучения возможно возбуждения так называемой кильватерной волны — ленгмюровской волны, бегущей вслед импульсу. В этой волне имеются фазы, в которых продольное электрическое поле является ускоряющим для электронов, бегущих вместе с волной. Поскольку фазовая скорость продольной волны равна групповой скорости лазерного импульса в плазме, которая лишь немногим меньше скорости света, релятивистские электроны могут находиться в ускоряющей фазе достаточно длительное время, приобретая значительную энергию. Этот метод ускорения электронов был впервые предложен в 1979 году[3].

При увеличении интенсивности лазерного импульса увеличивается амплитуда возбуждаемой плазменной волны и, как следствие, увеличивается темп ускорения. При достаточно высоких интенсивностях плазменная волна становится нелинейной и, в конце концов, обрушается. При этом возможно возникновение сильно нелинейного режима распространения лазерного импульса в плазме — так называемый пузырьковый (или баббл-) режим, в котором позади лазерного импульса образуется полость, похожая на пузырёк, практически полностью лишённая электронов. В этой полости также имеется продольное электрическое поле, способное эффективно ускорять электроны.

Экспериментально в линейном режиме взаимодействия был получен пучок электронов, ускоренный до энергий порядка 1 ГэВ на трассе длиной 3 см. Для компенсации дифракционной расходимости лазерного импульса в этом случае дополнительно использовался волновод в виде тонкого капилляра[4]. Увеличение мощности лазерного импульса до уровня петаватта позволило повысить энергию электронов до 2 ГэВ[5]. Дальнейшее увеличение энергии электронов было достигнуто за счёт разделения процессов их инжекции в ускоряющую плазменную волну и собственно процесса ускорения. Этим методом в 2011 году были получены электроны с энергией около 0,5 ГэВ[6], а в 2013 году был превышен уровень 3 ГэВ, причём общая длина ускорительного канала составила всего 1,4 см (4 мм — инжекционный этап, 1 см — ускорительный этап)[7]. В 2014 году в Национальной лаборатории имени Лоуренса в Беркли были получены первые экспериментальные результаты по ускорению электронов в капилляре длиной 9 см при помощи лазера BELLA. В этих экспериментах было продемонстрировано ускорение до энергии, превышающей 4 ГэВ, лазерным импульсом мощностью 0,3 ПВт, что стало новым рекордом[8]. В 2019 году там же был установлен новый рекорд — при пиковой мощности лазерного импульса 0,85 ПВт были получены электроны с энергией около 7,8 ГэВ в капилляре длиной 20 см[9]. В 2024 году там же в капиляре длиной 30 см была продемонстрирована генерация пучков электронов с энергией выше 10 ГэВ[10].

В нелинейном режиме взаимодействия максимально достигнутая энергия составила 1,45 ГэВ на трассе длиной 1,3 см. В эксперименте использовался лазерный импульс мощностью 110 ТВт[11].

См. также

Примечания

  1. R. Joel England et al. Dielectric laser accelerators (англ.) // Rev. Mod. Phys.. — 2014. — Vol. 86. — P. 1337. — doi:10.1103/RevModPhys.86.1337. Архивировано 12 февраля 2017 года.
  2. E. Esarey, P. Sprangle, J. Krall. Laser acceleration of electrons in vacuum (англ.) // Phys. Rev. E. — 1995. — Vol. 52. — P. 5443.
  3. T. Tajima, J. M. Dawson. Laser Electron Accelerator (англ.) // Phys. Rev. Lett.. — 1979. — Vol. 43. — P. 267.
  4. W. P. Leemans et al. GeV electron beams from a centimetre-scale accelerator (англ.) // Nature Physics. — 2006. — Vol. 2. — P. 696—699. Архивировано 20 октября 2010 года.
  5. Xiaoming Wang et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV (англ.) // Nature Communications. — Nature Publishing Group, 2013. — Vol. 4. — P. 1988. Архивировано 16 октября 2013 года.
  6. B. B. Pollock et al. Demonstration of a Narrow Energy Spread, ∼0.5  GeV Electron Beam from a Two-Stage Laser Wakefield Accelerator (англ.) // Phys. Rev. Lett.. — 2011. — Vol. 107. — P. 045001. Архивировано 12 января 2012 года.
  7. Hyung Taek Kim et al. Enhancement of Electron Energy to the Multi-GeV Regime by a Dual-Stage Laser-Wakefield Accelerator Pumped by Petawatt Laser Pulses (англ.) // Phys. Rev. Lett.. — 2013. — Vol. 111. — P. 165002. — doi:10.1103/PhysRevLett.111.165002. — arXiv:1307.4159.
  8. W. P. Leemans et al. Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime (англ.) // Phys. Rev. Lett.. — 2014. — Vol. 113. — P. 245002. — doi:10.1103/PhysRevLett.113.245002. Архивировано 22 июля 2020 года.
  9. A. J. Gonsalves et al. Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide (англ.) // Phys. Rev. Lett.. — 2019. — Vol. 122. — P. 084801. — doi:10.1103/PhysRevLett.122.084801. Архивировано 22 июля 2020 года.
  10. A. Picksley, J. Stackhouse, C. Benedetti, K. Nakamura, H. E. Tsai, R. Li, B. Miao, J. E. Shrock, E. Rockafellow, H. M. Milchberg, C. B. Schroeder, J. van Tilborg, E. Esarey, C. G. R. Geddes, A. J. Gonsalves. Matched Guiding and Controlled Injection in Dark-Current-Free, 10-GeV-Class, Channel-Guided Laser-Plasma Accelerators (англ.) // Physical Review Letters. — 2024-12-18. — Vol. 133, iss. 25. — ISSN 0031-9007. — doi:10.1103/PhysRevLett.133.255001.
  11. C. E. Clayton et al. Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection (англ.) // Phys. Rev. Lett.. — 2010. — Vol. 105. — P. 105003.

Литература

Научная

Научно-популярная

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia