Либо G может быть разбит на два меньших критических графа с ребром между каждой парой вершин, где две вершины берутся из разных частей, либо граф G имеет по меньшей мере 2k — 1 вершин[7]. Более строго, либо G имеет разложения такого типа, либо для каждой вершины v графа G существует k-раскраска, в которой v является единственной вершиной со своим цветом, а все остальные классы цветов имеют по меньшей мере две вершины[8].
Граф G является вершинно критическим тогда и только тогда, когда для любой вершины v существует оптимальная подходящая раскраска, в которой вершина v одна представляет класс цвета.
1-критических графов не существует.
Единственный 2-критический граф — это K2.
Все 3-критические графы исчерпываются простыми циклами нечётной длины[9].
Как показал Хаджос[10], любой k-критический граф может быть сформирован из полного графаKk путём комбинации построения Хайоша с операцией отожествления двух несмежных вершин. Граф, образованный таким образом, всегда требует k цветов в любой правильной раскраске.
Хотя каждый рёберно-критический граф обязательно является критическим, обратное неверно. Например, граф представленный справа, является 4-критическим, но не рёберно-критическим[11].
Вариации и обобщения
Дважды критический граф — это связный граф, в котором удаление любой пары смежных вершин уменьшает хроматическое число на два. Одна из нерешённых задач — является ли Kk единственным дважды критическим k-хроматическим графом[12].
↑Следует отметить, что не всегда под критическим графом понимается критический k-хроматический граф. В статье Визинга под критическим графом размерности k понимается граф, у которого размерность любой собственной части меньше k. Под размерностью графа при этом понимается минимальная размерность метрического пространства, в которое можно вложить граф так, что все смежные вершины окажутся на расстоянии 1. (Визинг 1968)
R. L. Brooks, W. T. Tutte. On colouring the nodes of a network // Proceedings of the Cambridge Philosophical Society. — 1941. — Т. 37, вып. 02. — С. 194–197. — doi:10.1017/S030500410002168X.
N. G. de Bruijn, P. Erdős. A colour problem for infinite graphs and a problem in the theory of relations // Nederl. Akad. Wetensch. Proc. Ser. A. — 1951. — Т. 54. — С. 371–373.. (Indag. Math.13.)
G. A. Dirac. A theorem of R. L. Brooks and a conjecture of H. Hadwiger // Proceedings of the London Mathematical Society. — 1957. — Т. 7, вып. 1. — С. 161–195. — doi:10.1112/plms/s3-7.1.161.
T. Gallai. Kritische Graphen I // Publ. Math. Inst. Hungar. Acad. Sci.. — 1963a. — Т. 8. — С. 165–192.
T. Gallai. Kritische Graphen II // Publ. Math. Inst. Hungar. Acad. Sci.. — 1963b. — Т. 8. — С. 373–395..
G. Hajós. Über eine Konstruktion nicht n-färbbarer Graphen // Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe. — 1961. — Т. 10. — С. 116–117.