Квадратная матрицаВ математике квадра́тная ма́трица — это матрица, у которой число строк совпадает с числом столбцов, и это число называется порядком матрицы. Любые две квадратные матрицы одинакового порядка можно складывать и умножать. Квадратные матрицы часто используются для представления простых линейных отображений — таких, как деформация[англ.] или поворот. Например, если R — квадратная матрица, представляющая вращение (матрица поворота) и v — вектор-столбец, определяющий положение точки в пространстве, произведение Rv даёт другой вектор, который определяет положение точки после вращения. Если v — вектор-строка, такое же преобразование можно получить, используя vRT, где RT — транспонированная к R матрица. Главная диагональЭлементы aii (i = 1, …, n) образуют главную диагональ квадратной матрицы. Эти элементы лежат на воображаемой прямой, проходящей из левого верхнего угла в правый нижний угол матрицы[1]. Например, главная диагональ 4х4 матрицы на рисунке содержит элементы a11 = 9, a22 = 11, a33 = 4, a44 = 10. Диагональ квадратной матрицы, проходящая через нижний левый и верхний правый углы, называется побочной. Специальные виды
Диагональные и треугольные матрицыЕсли все элементы вне главной диагонали нулевые, A называется диагональной. Если все элементы над (под) главной диагональю нулевые, A называется нижней (верхней) треугольной матрицей. Треугольная матрица, у которой все диагональные элементы равны 1, называется унитреугольной[2][3]. Единичная матрицаЕдиничная матрица En размера n — это n×n матрица, в которой все элементы на главной диагонали равны 1, а остальные элементы равны 0 (часто вместо буквы E используют букву I[4])[1]. Таким образом, Умножение на единичную матрицу оставляет матрицу неизменной:
Симметричные и антисимметричные матрицыКвадратная матрица A, совпадающая со своей транспонированной, то есть A = AT, называется симметричной. Если же A отличается от транспонированной матрицы знаком, то есть A = −AT, то A называется антисимметричной (или кососимметричной)[4][5]. В случае комплексных матриц понятие симметрии часто заменяют понятием самосопряжённости, а матрицу, удовлетворяющую равенству A∗ = A, называют эрмитовой (или самосопряжённой); здесь звёздочкой обозначена операция эрмитова сопряжения, смысл которой — в замене каждого элемента исходной матрицы комплексно сопряжённым числом с последующим транспонированием полученной матрицы[6][7]. По спектральной теореме для вещественных симметричных матриц и комплексных эрмитовых матриц существуют базисы, состоящие из собственных векторов; таким образом, любой вектор пространства можно представить в виде линейной комбинации собственных векторов. В обоих случаях все собственные значения вещественны[8]. Эту теорему можно распространить на бесконечномерный случай, когда матрицы имеют бесконечно много строк и столбцов. Обратимые матрицыКвадратная матрица A называется обратимой или невырожденной, если существует матрица B, такая, что Если матрица B существует, она единственна и называется обратной к A и записывается как A−1. Определённая матрица
Симметричная n×n матрица называется положительно определённой (соответственно, отрицательно определённой или неопределённой), если для всех ненулевых векторов x ∈ Rn соответствующая квадратичная форма
принимает только положительные значения (соответственно, отрицательные значения или и те, и другие). Если квадратичная форма принимает только неотрицательные (соответственно, только неположительные) значения, симметричная матрица называется положительно полуопределённой (соответственно, отрицательно полуопределённой). Матрица будет неопределённой, если она ни положительно, ни отрицательно полуопределена[11]. Симметричная матрица положительно определена тогда и только тогда, когда все её собственные значения положительны[12]. Таблица справа показывает два возможных случая для матриц 2×2. Если использовать два различных вектора, получим билинейную форму, связанную с A:
Ортогональная матрицаОртогональная матрица — это квадратная матрица с вещественными элементами, столбцы и строки которой являются ортогональными единичными векторами (то есть ортонормальными). Можно также определить ортогональную матрицу как матрицу, обратная для которой равна транспонированной[7]: откуда вытекает
где E — единичная матрица. Ортогональная матрица A всегда обратима (A−1 = AT), унитарна (A−1 = A*), и нормальна (A*A = AA*). Определитель любой ортогональной матрицы равен либо +1, либо −1[14]. Умножение на ортогональную матрицу задаёт такое линейное преобразование арифметического пространства , которое в случае матрицы с определителем +1 является простым поворотом, а в случае матрицы с определителем −1 является либо простым отражением, либо суперпозицией отражения и поворота. Комплексным аналогом ортогональной матрицы является унитарная матрица. ОперацииСледСледом квадратной матрицы A (tr(A)) называется сумма элементов главной диагонали. В то время как умножение матриц, вообще говоря, не коммутативно, след произведения двух матриц не зависит от порядка сомножителей:
Это непосредственно вытекает из определения произведения матриц: Также след матрицы равен следу транспонированной к ней, то есть
ОпределительОпределитель det(A) или |A| квадратной матрицы A — это число, определяющее некоторые свойства матрицы. Матрица обратима тогда и только тогда, когда её определитель ненулевой. Абсолютная величина определителя равна площади (в R2) или объёму (в R3) образа единичного квадрата (или куба), в то время как знак определителя соответствует ориентации соответствующего отображения — определитель положителен в том и только в том случае, когда ориентация сохраняется. Определитель 2×2 матриц вычисляется по формуле Определитель матриц 3×3 использует 6 произведений (правило Сарруса). Более длинная формула Лейбница обобщает эти две формулы на все размерности[15]. Определитель произведения матриц равен произведению определителей сомножителей:
Добавление любой строки с коэффициентом к другой строке, или любого столбца с коэффициентом к другому столбцу не изменяет определителя. Обмен местами двух строк или столбцов приводит к изменению знака определителя[17]. Используя эти операции, любую матрицу можно привести к нижней (или верхней) треугольной матрице, а для таких матриц определитель равен произведению элементов главной диагонали, что даёт способ вычисления определителя любой матрицы. Наконец, теорема Лапласа выражает определитель в терминах миноров, то есть определителей меньших матриц[18]. Эта теорема даёт возможность рекурсивного вычисления определителей (начав с определителя матрицы 1×1, или даже с определителя матрицы 0×0, который равен 1), что можно рассматривать как эквивалент формуле Лейбница. Определители можно использовать для решения линейных систем с помощью метода Крамера[19]. Собственные значения и собственные вектораЧисло λ и ненулевой вектор v, удовлетворяющие уравнению
называются собственным значением и собственным вектором матрицы A соответственно[20]. Число λ является собственным числом n×n матрицы A в том и только в том случае, когда A−λE не имеет обратной, что эквивалентно Многочлен pA от неизвестного[англ.] X, получаемый как определитель det(XE−A), называется характеристическим многочленом матрицы A. Это нормированный многочлен степени n. Таким образом, уравнение pA(λ) = 0 имеет максимум n различных решений, то есть собственных значений матрицы[21]. Эти значения могут быть комплексными, даже если все элементы матрицы A вещественны. Согласно теореме Гамильтона — Кэли, pA(A) = 0, то есть при подстановке самой матрицы в характеристический многочлен, получим нулевую матрицу[22]. Примечания
Ссылки
|