Категорический силлогизмФормальная логика есть не что иное, как учение о свойствах, общих всякой классификации, — разъясняет Анри Пуанкаре. — Она учит нас, что два солдата, являющихся частью одного полка, тем самым принадлежат к одной и той же бригаде, следовательно, к одной и той же дивизии; к этому-то и сводится вся теория силлогизмов[1]. Простой категорический силлоги́зм (др.-греч. συλ-λογισμός «подытоживание, подсчёт, умозаключение» от συλ- (συν-) «вместе» + λογισμός «счёт, подсчёт; рассуждение, размышление») — дедуктивное умозаключение, состоящее из трёх простых атрибутивных суждений: двух посылок и одного заключения. Пример силлогизма:
Структура простого категорического силлогизмаПростой категорический силлогизм состоит из трёх простых атрибутивных суждений (посылок и заключения) и включает в себя три понятия — «термины простого категорического силлогизма». Термины:
Больший и меньший термины также называются крайними. Посылки:
Общие правила простого категорического силлогизмаПравила терминов
Тут «распределён» значит «используется во всей полноте», то есть суждение касается всех значений термина (например, «все люди», «ни одна рептилия» и так далее). Правила посылок
Фигуры и модусыФигурами силлогизма называются формы силлогизма, отличающиеся расположением среднего термина в посылках:
Каждой фигуре отвечают модусы — формы силлогизма, различающиеся количеством и качеством посылок и заключения. Например, в силлогизме:
Бо́льшая посылка является простым суждением вида a (общеутвердительным), меньшая посылка — это тоже простое суждение вида a, и вывод в данном случае представляет собой простое суждение вида a. Поэтому рассмотренный силлогизм имеет модус aaa фигуры 1. Силлогизм:
имеет модус aee фигуры 2. Силлогизм:
имеет модус aai фигуры 3. Всего модусов во всех четырёх фигурах, то есть возможных комбинаций простых суждений в силлогизме, — 256. В каждой фигуре 64 модуса. Однако из всех этих 256 модусов только 24 (19 сильных и 5 слабых) дают достоверные выводы: из истинных посылок выводится необходимо истинное заключение. Заключение сделанное по остальным модусам может оказаться как истинным так и ложным; истинность будет зависеть исключительно от конкретного содержания посылок и заключения. Модусы изучались ещё средневековыми школами, и для правильных модусов каждой фигуры были придуманы мнемонические имена:
Здесь и выше гласные буквы жирным шрифтом означают тип суждения:
a и i — первая и вторая гласные буквы в слове affirmo (утверждаю, лат.), буквы e и o — аналогично в слове nego (отрицаю, лат.). Курсивом выделены слабые модусы — модусы которые содержат частное заключение при возможности общего. Слабые модусы, а также модусы Felapton, Darapti, Fesapo и Bramantip, предполагают непустоту классов, с которыми оперируют силлогизмы (пример Б. Рассела: Все золотые горы — золотые. Все золотые горы — горы. По модусу Darapti отсюда должно следовать: Некоторые горы золотые; однако такое умозаключение неверно, если класс золотых гор пуст). Примеры силлогизмов каждого типа. Barbara
Celarent
Darii
Ferio
Barbari
Celaront
Cesare
Camestres
Festino
Baroco
Cesaro
Camestros
Darapti
Disamis
Datisi
Felapton
Bocardo
Ferison
Bramantip
Camenes
Dimaris
Fesapo
Fresison
Camenos
В соответствии с правилами, формы могут быть преобразованы в другие формы, и все формы могут быть преобразованы в одну из форм первой фигуры. ИсторияУчение о силлогизме впервые изложено у Аристотеля в его «Первой аналитике». Он говорит лишь о трёх фигурах категорического силлогизма, не упоминая о возможной четвёртой. Особенно подробно он рассматривает роль модальности суждений в процессе умозаключения. Преемник Аристотеля, основатель ботаники Теофраст, по словам Александра Афродизийского (в его комментарии к первой «Аналитике» Аристотеля), прибавил ещё пять модусов (modi) к первой фигуре силлогизма; эти пять модусов впоследствии были выделены Клавдием Галеном (жившим во II-м в. н. э.) в особую четвёртую фигуру. Кроме того, Теофраст и его ученик Евдем занялись анализом условного и разделительного силлогизмов. Они допустили пять видов умозаключений: два из них соответствуют условному силлогизму, а три — разделительному, который они рассматривали как видоизменение условного силлогизма. Этим и заканчивается развитие учения о силлогизме в древности, если не считать того добавления, которое сделали стоики в учении об условном силлогизме. По словам Секста Эмпирика, стоики признавали некоторые виды условного и разделительного силлогизма αναπόδεικτοι, то есть не нуждающимися в доказательствах, и рассматривали их как прототипы силлогизма (как, например, смотрит на силлогизм Зигварт). Стоики признавали пять видов подобных силлогизмов, совпадающих с Теофрастовыми. Секст Эмпирик приводит следующие примеры для этих пяти видов:
У Секста Эмпирика и скептиков вообще мы встречаемся и с критикой силлогизма, но цель критики — доказательство невозможности доказательства вообще, в том числе и силлогистического. Схоластическая логика ничего существенного не добавила к учению о силлогизмах; она лишь порвала ту связь с теорией познания, которая существовала у Аристотеля и тем превратила логику в чисто формальное учение. Образцовым руководством логики в средние века было сочинение Марциана Капеллы, образцовым комментарием — сочинения Боэция. Некоторые из комментариев Боэция занимаются специально учением о силлогизмах, например «Introductio ad categoricos syllogismos», «De syllogismo categorico» и «De syllogismo hypothetico». Сочинения Боэция имеют некоторое историческое значение; они способствовали также установлению логической терминологии. Но в то же самое время именно Боэций придал учениям логическим характер чисто формальный. Из эпохи схоластической философии по отношению к учению о силлогизме внимания заслуживает Фома Аквинский (ум. 1274), в особенности его подробный анализ ложных умозаключений («De fallaciis»). Сочинение по логике, имевшее некоторое историческое значение, принадлежит византийцу Михаилу Пселлу. Он предложил так называемый «логический квадрат», в коем наглядно выражается отношение различных видов суждений. Ему принадлежат названия различных modi (греч. τρόποι) фигур. Эти названия, латинизированные, перешли в западную логическую литературу. Михаил Пселл, следуя Теофрасту, пять modi четвёртой фигуры относил к первой. Название видов имело у него в виду мнемонические цели. Ему же принадлежит и общеупотребительное обозначение буквами количества и качества суждений (а, е, i, о). Учения логические у Пселла носят формальный характер. Сочинение Пселла было переведено Уильямом из Шервуда и получило распространение благодаря переделке Петра Испанского (папы Иоанна XXI). У Петра Испанского в его учебнике заметно то же стремление к мнемотехническим правилам. Латинские названия видов фигур, приводимые в формальных логиках, взяты у Петра Испанского. Пётр Испанский и Михаил Пселл представляют собой расцвет формальной логики в средневековой философии. С эпохи Возрождения начинается критика формальной логики и силлогистического формализма. Первым серьёзным критиком Аристотелевской логики был Пьер Рамэ, погибший во время Варфоломеевой ночи. Во второй части его «Диалектики» говорится о силлогизме; учение его о силлогизме, однако, существенных отступлений от Аристотеля не представляет. Начиная с Бэкона и Декарта философия идёт по новым путям и отстаивает методы исследования: непригодность силлогистического метода в смысле метода получения нового знания становится всё более и более очевидной. Тем не менее, решение силлогизмов составляет важнейшую часть любого учебника по традиционной логике.[2] Несмотря на то, что использование силлогизмов само по себе не даёт новое знание, использование правил построения силлогизмов позволяет избежать логических ошибок, софизмов, в рамках имеющегося знания (см. Демагогия). Силлогизм в современной логикеСиллогизм преобладал в логике до XIX века и имел ограниченное приложение в частности из-за привязки к категорическому силлогизму. Заменой аристотелевской силлогистике служит более простая логика первого порядка. См. такжеПримечания
Литература
Ссылки |
Portal di Ensiklopedia Dunia