Группа треугольника (2,3,7)Группа треугольника (2,3,7)[1] — треугольная группа (группа фон Дика) D(2,3,7) сохраняющих ориентацию отображений. Важный объект в теории римановых поверхностей и геометрии Лобачевского в связи с поверхностями Гурвица, а именно[уточнить] с римановыми поверхностями рода g с максимально высоким возможным порядком группы автоморфизмов, равным 84(g − 1). Нормальные подгруппы без кручения треугольной группы (2,3,7) являются фуксовыми группами, ассоциированными с поверхностями Гурвица, такими как квартика Клейна[англ.], поверхность Макбита и первая тройка Гурвица[англ.]. ПостроенияГиперболическое построениеЧтобы построить треугольную группу, начнём с гиперболического треугольника с углами π/2, π/3, π/7. Этот треугольник является наименьшим гиперболическим треугольником Шварца и его отражения замощают плоскость путём отражений относительно сторон. Рассмотрим группу, порождённую отражениями относительно сторон треугольника. Эта группа является неевклидовой кристаллографической группой[англ.] (дискретной подгруппой гиперболических изометрий) с этим треугольником в качестве фундаментальной области. Ассоциированная мозаика является разделённой семиугольной мозаикой порядка 3[англ.]. Треугольная группа (2,3,7) определяется как подгруппа индекса 2, состоящая из сохраняющих ориентацию изометрий, и является фуксовой группой (сохраняющей ориентацию неевклидовой кристаллографической группой).
Задание группыГруппа может быть задана при помощи пары генераторов, g2, g3, со следующими соотношениями: Геометрически эти соотношения соответствуют вращениям на 2π/2, 2π/3 и 2π/7 вокруг вершин треугольника Шварца. Алгебра кватернионовГруппа треугольников (2,3,7) может быть представлена при помощи группы кватернионов с нормой 1 при подходящем R-порядке[англ.][2] в алгебре кватернионов. Конкретнее, группа треугольника является факторгруппой группы кватернионов по её центру ±1. Пусть η = 2cos(2π/7). Тогда из равенства видим, что Q(η) является полностью вещественным кубическим расширением Q. Гиперболическая группа треугольника (2,3,7) является подгруппой группы элементов алгебры кватернионов с нормой 1, образованной как ассоциативная алгебра парой генераторов i и j и отношениями i2 = j2 = η, ij = −ji. Можно выбрать подходящий порядок кватернионов Гурвица[англ.] в алгебре кватернионов. Здесь порядок порождается элементами Фактически порядок является свободным Z[η]-модулем над базисом . Генераторы удовлетворяют условиям которые сводятся к соотношениям в треугольной группе после взятия факторгруппы по центру. Связь с SL(2,R)Расширив скаляры из Q(η) в R (путём стандартного вложения), получим изоморфизм между алгеброй кватернионов и алгеброй M(2,R) вещественных 2 х 2 матриц. Выбор конкретного изоморфизма позволяет показать группу треугольника (2,3,7) как частный случай фуксовой группы в SL(2,R), а именно как факторгруппу модулярной группы. Это можно визиуализировать с помощью ассоциированных мозаик, как представлено справа на рисунке — мозаика (2,3,7) диска Пуанкаре является факторпространством модулярной мозаики верхнего полупространства. Однако для многих целей нет необходимости в явном задании изоморфизма. Так, следы элементов группы (а следовательно, расстояние перемещения гиперболических элементов в верхней полуплоскости, как и систолы фуксовых подгрупп) можно вычислить с помощью сокращённых следов в алгебре кватернионов по формуле Примечания
Литература
|