Граф призмыГраф призмы — рёберный граф одной из призм. ПримерыИндивидуальные графы можно назвать согласно ассоциированным телам:
Хотя геометрически звёздчатые многоугольники также служат гранями другой последовательности (самопересекающихся и невыпуклых) призматических многогранников, графы этих звёздчатых призм изоморфны графам призм и не образуют отдельной последовательности графов. ПостроениеГрафы призм являются примерами обобщённых графов Петерсена с параметрами GP(n,1). Графы также можно образовать как прямое произведение цикла и единичного ребра[1]. Как и многие вершинно-транзитивные графы, призматические графы можно построить как графы Кэли. Диэдральная группа порядка n является группой симметрий правильного n-угольника на плоскости. Она действует на n-угольник вращениями и отражениями. Группа может быть сгенерирована двумя элементами, вращением на угол и одним отражением, и граф Кэли этой группы с этим генерирующим множеством является графом призмы. Абстрактно группа имеет задание (где r — это вращение, а f — отражение) и граф Кэли имеет r и f (или r, r−1 и f) в качестве генераторов [1] Граф n-угольной призмы с нечётным n можно построить как циркулянтный граф , однако это построение не работает для чётных значений n [1]. СвойстваГраф n-угольной призмы имеет 2n вершин и 3n рёбер. Графы являются регулярными кубическими графами. Поскольку призма имеет симметрии, переводящие любую вершину в любую другую, графы призм являются вершинно-транзитивными графами. Являясь полиэдральными графами, эти графы также являются вершинно 3-связными планарными графами. Любой граф призмы имеет гамильтонов цикл[2]. Среди всех двусвязных кубических графов графы призм имеют с точностью до постоянного множителя наибольшее возможное число 1-разложений графа. 1-разложение — это разбиение множества рёбер графа на три совершенных паросочетания, или, эквивалентно, рёберная раскраска графа тремя цветами. Любой двусвязный кубический граф с n вершинами имеет O(2n/2) 1-разложений, а граф призмы имеет Ω(2n/2) 1-разложений [3]. Число остовных деревьев графа n-угольной призмы задаётся формулой [4]. Для n = 3, 4, 5, ... эти числа равны
Графы n-угольных призм для чётных n являются частичными кубами. Они образуют одно из немногих известных бесконечных семейств кубических графов частичных кубов, и они являются (за исключением четырёх случаев) единственными вершинно-транзитивными кубическими частичными кубами[5]. Граф пятиугольной призмы является одним из запрещённых миноров для графов с древесной шириной три[6]. Графы треугольной призмы и куба имеют древесную ширину в точности три, но все бо́льшие призмы имеют древесную ширину четыре. Связанные графыДругие бесконечные семейства полиэдральных графов, основанные подобным же образом из многогранников с правильными основаниями, включают графы антипризм[англ.] и колёса (графы пирамид). Другими вершинно-транзитивными полиэдральными графами являются архимедовы графы. Если два цикла призматического графа разорвать удалением одного ребра в одном и том же месте в обоих циклах, получим лестницу. Если два удалённых ребра заменить двумя скрещивающимися рёбрами, получим непланарный граф «Лестница Мёбиуса»[7]. Примечания
Литература
|