Геометрия ГалуаГеометрия Галуа (названа именем французского математика 19-го века Эвариста Галуа) — это раздел конечной геометрии, рассматривающий алгебраическую и аналитическую геометрию над конечными полями (или полями Галуа)[1]. В более узком смысле геометрию Галуа можно определить как проективное пространство над конечным полем[2]. ВведениеОбъектами изучения служат векторные пространства, аффинные и проективные пространства над конечными полями и различные структуры, содержащихся в них. В частности, дуги[англ.], овалы, гиперовалы, униталы[англ.], блокирующие множества[англ.], овалы, многообразия и другие конечные аналоги структур, имеющихся в бесконечных геометриях. Джордж Конуэлл продемонстрировал геометрию Галуа в 1910, когда описывал решение задачи Киркмана о школьницах как разбиение множества скрещивающихся прямых в PG(3,2), трёхмерной проективной геометрии над полем Галуа GF(2)[англ.][3]. Подобно методам геометрии прямых в пространстве над полем с характеристикой 0, Конуэлл использовал плюккеровы координаты в PG(5,2) и отождествил точки, представляющие прямые в PG(3,2) с точками, лежащими на квадрике Кляйна[англ.]. В 1955 году Беньямино Сегре описал овалы для нечётных q. Теорема Сегре[англ.] утверждает, что в геометрии Галуа нечётного порядка (проективная плоскость, определённая над конечным полем с нечётной характеристикой) любой овал является коническим сечением. На Международном конгрессе математиков 1958 года Сегре представил обзор имеющихся на то время результатов в геометрии Галуа[4]. называется порядком конечной проективной плоскости, такой, что каждая точка (прямая), и число точек равняется числу прямых, Например, при проективная плоскость - треугольник. Плоскости Галуа являются конечными проективными плоскостями, для которых справедлива теорема Дезарга. Для конечной проективной плоскости определяется несколько когерентных конфигураций. Схема, содержащая их, определяется на множестве где - множество элементов (точек и прямых) конечной проективной плоскости и в случае дезарговости расширяется до схемы, соответствующей покомпонентному действию группы на [5] См. такжеПримечания
Литература
|