Плоскость Фано — конечная проективная плоскость порядка 2, имеющая наименьшее возможное число точек и прямых (7 точек и 7 прямых), с тремя точками на каждой прямой и с тремя прямыми, проходящими через каждую точку. Названа по имени итальянского математика Джино Фано.
Плоскость Фано можно построить с помощью линейной алгебры как проективную плоскость над конечным полем с двумя элементами. Можно таким же образом построить проективные плоскости над любым другим конечным полем, но плоскость Фано будет наименьшей.
Используя стандартное построение проективных пространств с помощью однородных координат, семь точек плоскости Фано можно пометить семью ненулевыми тройками двоичных цифр 001, 010, 011, 100, 101, 110 и 111.
Для любой пары точек p и q третья точка на прямой pq имеет метку, получающуюся из меток p и q сложением по модулю 2;
например 110+011=101.
Другими словами, точки плоскости Фано соответствуют ненулевым точкам конечного векторного пространства размерности 3 над конечным полем порядка 2.
Согласно этому построению плоскость Фано считается дезарговой, хотя плоскость слишком мала, чтобы содержать невырожденную конфигурацию Дезарга (требуется 10 точек и 10 прямых).
Прямым плоскости Фано можно также приписать однородные координаты, снова используя ненулевые тройки двоичных цифр. В этой системе точка инцидентна прямой, если координаты точки и координаты прямой имеют чётное число позиций, в которых обе координаты являются ненулевыми битами. Например, точка 101 принадлежит прямой 111, поскольку и прямая, и точка имеют ненулевые биты в двух общих позициях. В терминах линейной алгебры, точка принадлежит прямой, если скалярное произведение векторов, представляющих точку и прямую, равно нулю.
Прямые можно разделить на три типа.
На трёх прямых двоичные коды для точек имеют 0 в постоянной позиции. Так, на прямой 100 (содержащая точки 001, 010 и 011) все точки имеют 0 в первой позиции. Прямые 010 и 001 имеют то же свойство.
На трёх прямых двоичный код точек имеет одно и то же значение в двух позициях. Так, на прямой 110 (содержащей точки 001, 110 и 111) значения первой и второй позиций (координат) точек всегда одинаковы. Прямые 101 и 011 имеют аналогичное свойство.
На оставшейся прямой 111 (содержащей точки 011, 101 и 110) каждый код имеет в точности два ненулевых бита.
48 перестановок с полным циклом длины 7 образуют два класса сопряжённости по 24 элемента в каждом:
A переходит в B, B в C, C в D. В этом случае D лежит на одной прямой с A и B.
A переходит в B, B в C, C в D. В этом случае D лежит на одной прямой с A и C.
Вследствие теоремы Редфилда — Пойи число неэквивалентных раскрасок плоскости Фано в n цветов равно:
Конфигурации
Плоскость Фано содержит следующие различные конфигурации точек и прямых. Для каждого вида конфигурации число копий конфигурации, умноженное на число симметрий плоскости, при которой конфигурация сохраняется, равно 168, размеру всей группы симметрий.
Существует 7 точек и 24 симметрии, сохраняющих эти точки.
Существует 7 прямых и 24 симметрии, сохраняющих эти прямые.
Существует 7 вариантов выбора четырёхугольника из четырёх (неупорядоченных) точек, никакие три из которых не лежат на одной прямой и 24 симметрии, которые сохраняют такой четырёхугольник. Эти четыре точки образуют дополнение прямой, которая является диагональю четырёхугольника.
Существует 21 неупорядоченная пара точек, каждая из которых может быть переведена симметрией в любую другую неупорядоченную пару. Для каждой неупорядоченной пары существует 8 симметрий, сохраняющих её.
Существует 21 флаг, состоящий из прямой и точки на ней. Каждый флаг соответствует неупорядоченной паре других точек, лежащих на той хе прямой. Для каждого флага существует 8 различных симметрий, сохраняющих его.
Существует 28 треугольников, которые соответствуют один-к-одному 28 двойным касательным квартикам[англ.][2]. Для каждого треугольника существует шесть симметрий, сохраняющих его, по одному для каждой перестановки точек внутри треугольника.
Существует 28 способов выбора точки и прямой, не инцидентных друг другу (антифлаг) и шесть способов перестановки плоскости Фано, сохраняющих антифлаг. Для любой пары неинцидентных точки и прямой (p,l) три точки, не равные p и не принадлежащие l, образуют треугольник, и для любого треугольника существует единственный способ сгруппировать оставшиеся четыре точки в антифлаг.
Существует 28 способов построения шестиугольника, в котором никакие три последовательные вершины не лежат на одной прямой, и шесть симметрий, сохраняющих любой такой шестиугольник.
Существует 42 упорядоченные пары точек и снова, каждая может быть переведена симметрией в любую другую упорядоченную пару. Для упорядоченных пар существует 4 симметрии, сохраняющих её.
Существует 42 способа выбора четырёхугольника из четырёх циклически упорядоченных точек, никакие три из которых не лежат на одной прямой, и четыре симметрии, сохраняющие любой такой упорядоченный четырёхугольник. Для любой неориентированной четвёрки имеется два циклических порядка.
Существует 84 способа выбора треугольника с точкой на этом треугольнике и для каждого выбора существует две симметрии, сохраняющих этот выбор.
Существует 84 способа выбора пятиугольника, при котором никакие три последовательные вершины не лежат на одной прямой, и две симметрии, сохраняющие любой пятиугольник.
Существует 168 различных способов выбора треугольника с упорядочением его трёх вершин и только одна тождественная симметрия, сохраняющая эту конфигурацию.
Теоретико-групповые построения
7 точек плоскости соответствуют 7 неединичным элементам группы (Z2)3 = Z2 × Z2 × Z2. Прямые плоскости соответствуют подгруппам порядка 4, изоморфным Z2 × Z2. Группа автоморфизмовGL(3,2)[англ.] группы (Z2)3 является группой изоморфизмов плоскости Фано и имеет порядок 168.
Блок-схемы
Плоскость Фано является малой симметричной блок-схемой, а именно, схемой 2-(7,3,1). Точки схемы являются точками плоскости, а блоки схемы являются прямыми плоскости. Таким образом, плоскость Фано является важным примером теории блок-схем.
Если разбить одну прямую на три двуточечные прямые, получим «нефанову конфигурацию», которую можно вложить в вещественную плоскость. Это другой важный пример из теории матроидов, который следует исключить, чтобы выполнялось большое число теорем.
Плоскость Фано, будучи блок-схемой, является системой троек Штайнера. А в таком случае, ей можно придать структуру квазигруппы. Эта квазигруппа совпадает с мультипликативной структурой, определённой единицами октонионовe1, e2, …, e7 (без 1) если знаки произведения октонионов игнорировать[3].
Трёхмерное фаново пространство
Плоскость Фано можно распространить на трёхмерный случай, чтобы образовать наименьшее трёхмерное проективное пространство, и оно обозначается PG(3,2).
Оно имеет 15 точек, 35 прямых и 15 плоскостей.