Волоконно-оптический гироскопВолоконно-оптический гироскоп (ВОГ) — это оптико-электронный прибор, измеряющий абсолютную (относительно инерциального пространства) угловую скорость[1]. Как и у всех оптических гироскопов, принцип работы основан на эффекте Саньяка. Луч света в волоконно-оптическом гироскопе проходит через катушку оптоволокна, отсюда и название. Для повышения чувствительности гироскопа используют световод большой длины (порядка 1000 метров), уложенный витками. В отличие от кольцевого лазерного гироскопа, в волоконно-оптических гироскопах обычно используется свет с очень маленькой длиной когерентности, что необходимо для увеличения точности гироскопа до удовлетворительного уровня. В качестве источника света может использоваться даже не лазерный прибор, а, например, светодиод. Принцип работы
В самом опыте Саньяка сколлимированный и поляризованный пучок света заводился в интерферометр, в котором разделялся на два пучка, обходивших интерферометр в противоположных направлениях. После обхода пучки совмещались и интерференционная картина регистрировалась на фотопластинке. Эксперименты показали, что при вращении установки интерференционная картина сдвигалась, причем сдвиг оказался пропорциональным скорости вращения. Использование оптического волокна позволяет избавиться от зеркал и увеличить длину оптического пути, от которого в свою очередь зависит детектируемая разность фаз: где — возникающая разность фаз, — радиус контура, — длина оптического волокна, — длина волны оптического излучения, — скорость света в вакууме, — угловая скорость. В отсутствие угловой скорости разность фаз равна нулю, и фоточувствительный элемент будет регистрировать максимум интенсивности. При возникновении угловой скорости произойдет кратное изменение разности фаз между излучениями. Изменение интенсивности на фотоприемном устройстве описывается следующим уравнением: Зная, что фаза может изменяться от до можно с уверенностью детектировать соответствующий диапазон угловых скоростей: Если контур длиной 10 км намотать радиусом 30 см, то с источником оптического излучения на длине волны 1550 нм диапазон детектируемый угловых скоростей составит 4.4 градусов в секунду[2]. Используя качественные аналого-цифровые преобразователи, можно детектировать изменения фазы вплоть до микрорадиан, а значит чувствительность такой системы составит порядка 0.005 градусов в час. Базовая схема такого гироскопа имеет набор ограничений:
В схеме современных волоконно-оптических гироскопов применяются техники на основе частотных и фазовых модуляторов. Частотные модуляторы переводят фазу Саньяка в переменные изменения разности частот противоположно бегущих лучей, поэтому при компенсации фазы Саньяка разностная частота пропорциональна угловой скорости вращения Ω. Частотные модуляторы основаны на акустооптическом эффекте, который состоит в том, что при прохождении в среде ультразвуковых колебании в ней появляются области с механическими напряжениями (областями сжатия и разрежения), это приводит к изменению коэффициента преломления среды. Вызванные ультразвуковой волной изменения коэффициента преломления среды образуют центры дифракции для падающего света. Частотный сдвиг света определяется частотой ультразвуковых колебаний. Достоинством частотных модуляторов при использовании в ВОГ является представление выходного сигнала в цифровом виде. Фазовые модуляторы переводят фазу Саньяка в изменение амплитуды переменного сигнала, что исключает низкочастотные шумы и облегчает измерение информационного параметра. В оптимальную конфигурацию ВОГ входит[2]:
Свойства прибораПоявлению такого прибора, как волоконно-оптический гироскоп, способствовало развитие волоконной оптики, а именно разработка одномодового диэлектрического световода со специальными характеристиками (устойчивая поляризация встречных лучей, высокая оптическая линейность, достаточно малое затухание). Именно такие световоды определяют уникальные свойства прибора:
Применение
Широко применяется в инерциальных навигационных системах среднего класса точности. БИНС на основе ВОГ применяются в навигации для наземного транспорта, кораблей, подводных лодок и спутников[3]. В РоссииВ России производством и исследованием современных волоконно-оптических гироскопов и приборов на их основе занимаются ряд центров:
Кроме того, группы учёных в ПНИПУ, ИТМО[6], ЛЭТИ и СГУ[7] ведут исследовательскую и образовательную деятельность по улучшению характеристик волоконно-оптических гироскопов и приборов на их основе. Примечания
Литература
См. также |
Portal di Ensiklopedia Dunia