Вейвлеты Добеши (англ.Daubechies wavelet) — семейство ортогональных вейвлетов с компактным носителем, вычисляемым итерационным путём. Названы в честь математика из США, первой построившей данное семейство, Ингрид Добеши.
Для построения вейвлетов воспользуемся уравнением растяжения и вейвлет-уравнением:
Компактность носителя функций и может быть достигнута, если будет выбрано конечное число таким образом, чтобы была достигнута ортогональность и гладкость вейвлета, либо чтобы выполнялось условие моментов. Для области Фурье условие ортогональности и гладкости выглядит следующим образом:
Если положить, что — полином по , то условие нулевых моментов даёт , где — полином по .
Для поиска коэффициентов необходимо получить , выделив форму полинома . Из условия ортогональности и условия нулевых моментов следует, что
Разложив до порядка , получим явный вид полинома:
Путём спектрального разложения на множители можно извлечь корни из :
Искомые коэффициенты вейвлета будут являться коэффициентами при в обратном порядке.
Также для построения вейвлетов данного типа используется каскадный алгоритм. Он позволяет поточечно строить масштабирующую функцию по известным коэффициентам . На каждом шаге алгоритма функция уточняется по оси в 2 раза. Далее при необходимости применяется сглаживание . После этого, зная и , находится функция самого вейвлета .